Uncertainty Quantification (UQ) in generic MonteCarlo simulations

被引:0
|
作者
Saracco, P. [1 ]
Batie, M. [1 ]
Hoff, G. [1 ]
Pia, M. G. [1 ]
机构
[1] INFN Natl Inst Nucl Phys, I-16146 Genoa, Italy
来源
2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) | 2012年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present results from a recently launched project to study computational issues related to the quantification of non statistical uncertainties in numerical ( Monte Carlo) simulations: they derive from different areas of the process of simulation[1], like e.g. epistemic uncertainties[2], experimental errors in physical data, error propagation from the employed numerical algorithms, etc.. This paper addresses the development of methods to predict the effects of a set of correlated, partially correlated or un-correlated physical uncertainties on the observables produced in a Monte Carlo simulation. It also provides some insight on the computational effort needed and on the possible software solutions to be implemented in the kernel of Monte Carlo codes to facilitate the quantification of uncertainty in experimental use cases.
引用
收藏
页码:651 / 656
页数:6
相关论文
共 50 条
  • [1] Progress with Uncertainty Quantification in Generic Monte Carlo Simulations
    Saracco, P.
    Pia, M. G.
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [2] Uncertainty quantification (UQ) as an archetype for research: Integrating UQ into undergraduate research education
    Aakash, B. S.
    Perez-Roldan, D.
    Ibrahim, A.
    Shields, M. D.
    2019 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2019), 2019,
  • [3] SGEMS-UQ: An uncertainty quantification toolkit for SGEMS
    Li, Lewis
    Boucher, Alexandre
    Caers, Jef
    COMPUTERS & GEOSCIENCES, 2014, 62 : 12 - 24
  • [4] UNCERTAINTY QUANTIFICATION IN TURBOMACHINERY SIMULATIONS
    Emory, Michael
    Iaccarino, Gianluca
    Laskowski, Gregory M.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 2C, 2016,
  • [5] Uncertainty quantification for multiscale simulations
    DeVolder, B
    Glimm, J
    Grove, JW
    Kang, Y
    Lee, Y
    Pao, K
    Sharp, DH
    Ye, K
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (01): : 29 - 41
  • [6] Uncertainty Quantification for Turbulent Mixing Simulations
    Kaman, Tulin
    Glimm, James
    Sharp, David H.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS - ASTRONUM 2010, 2011, 444 : 21 - +
  • [7] Uncertainty Quantification in Simulations of Myocardial Ischemia
    Bergquist, Jake A.
    Zenger, Brian
    Rupp, Lindsay C.
    Narayan, Akil
    Tate, Jess
    MacLeod, Rob S.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [8] Simulations of Die Casting With Uncertainty Quantification
    Shahane, Shantanu
    Mujumdar, Soham
    Kim, Namjung
    Priya, Pikee
    Aluru, Narayana R.
    Ferreira, Placid
    Kapoor, Shiv G.
    Vanka, Surya
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (04):
  • [9] While, In General, Uncertainty Quantification (UQ) Is NP-Hard, Many Practical UQ Problems Can Be Made Feasible
    Gray, Ander
    Ferson, Scott
    Kosheleva, Olga
    Kreinovich, Vladik
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [10] Uncertainty Quantification (UQ) Techniques to Improve Predictions of Laser Beam Control Performance
    Carreras, Richard A.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS IX, 2017, 10194