GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM

被引:4
|
作者
Chen, Peng [1 ]
Cao, Zhijie [1 ]
Chen, Sitong [2 ]
Tang, Xianhua [2 ]
机构
[1] China Three Gorges Univ, Coll Sci, Yichang 443002, Hubei, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2021年 / 11卷 / 01期
关键词
Reaction-diffusion system; ground states; strongly indefinite functional; HOMOCLINIC SOLUTIONS;
D O I
10.11948/20200349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of the ground state of a strongly indefinite fractional reaction-diffusion system based on the Non-Nehari method established by Tang-Chen-Lin-Yu [J. Differ. Equ., 2020(268), 4663-4690]. In particular, neither any monotonicity condition nor any Ambrosetti-Rabinowitz growth condition is required. To our knowledge, this is the first result about the ground states with the strongly indefinite case for fractional reaction-diffusion system.
引用
收藏
页码:556 / 567
页数:12
相关论文
共 50 条
  • [1] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [2] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306
  • [3] On matrix product ground states for reaction-diffusion models
    Hinrichsen, H
    Sandow, S
    Peschel, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2643 - 2649
  • [4] On matrix product ground states for reaction-diffusion models
    Journal of Physics A: Mathematical and General, 29 (11):
  • [5] Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system
    Owolabi, Kolade M.
    Karaagac, Berat
    CHAOS SOLITONS & FRACTALS, 2020, 141
  • [6] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [7] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [8] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [9] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [10] Ground States for Reaction-Diffusion Equations with Spectrum Point Zero
    Peng Chen
    Xianhua Tang
    The Journal of Geometric Analysis, 2022, 32