A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: its application on PAM50 algorithm

被引:13
作者
Fresno, Cristobal [1 ]
Gonzalez, German Alexis [1 ]
Merino, Gabriela Alejandra [1 ]
Flesia, Ana Georgina [2 ,3 ]
Podhajcer, Osvaldo Luis [4 ]
Llera, Andrea Sabina [4 ]
Fernandez, Elmer Andres [1 ]
机构
[1] Univ Catolica Cordoba, UA AREA CS AGR ING BIO S CONICET, RA-5016 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM CONICET, RA-5000 Cordoba, Argentina
[3] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[4] Inst Leloir CONICET, Lab Mol & Cellular Therapy, RA-1405 Buenos Aires, DF, Argentina
关键词
BREAST-CANCER METASTASIS; EXPRESSION SIGNATURE; CARCINOMAS; PROGNOSIS; SUBTYPES; THERAPY; GENES; IDENTIFICATION; PREDICTION; MODEL;
D O I
10.1093/bioinformatics/btw704
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Results: Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results (n = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions.
引用
收藏
页码:693 / 700
页数:8
相关论文
共 65 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[3]  
Bittner M., 2012, EXPRESSION PROJECT O
[5]   Genes that mediate breast cancer metastasis to the brain [J].
Bos, Paula D. ;
Zhang, Xiang H. -F. ;
Nadal, Cristina ;
Shu, Weiping ;
Gomis, Roger R. ;
Nguyen, Don X. ;
Minn, Andy J. ;
van de Vijver, Marc J. ;
Gerald, William L. ;
Foekens, John A. ;
Massague, Joan .
NATURE, 2009, 459 (7249) :1005-U137
[6]   Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer [J].
Calabro, Alberto ;
Beissbarth, Tim ;
Kuner, Ruprecht ;
Stojanov, Michael ;
Benner, Axel ;
Asslaber, Martin ;
Ploner, Ferdinand ;
Zatloukal, Kurt ;
Samonigg, Hellmut ;
Poustka, Annemarie ;
Sueltmann, Holger .
BREAST CANCER RESEARCH AND TREATMENT, 2009, 116 (01) :69-77
[7]   Prediction of metastatic relapse in node-positive breast cancer:: establishment of a clinicogenomic model after FEC100 adjuvant regimen [J].
Campone, Mario ;
Campion, Loic ;
Roche, Henry ;
Gouraud, Wilfried ;
Charbonnel, Catherine ;
Magrangeas, Florence ;
Minvielle, Stephane ;
Geneve, Jean ;
Martin, Anne-Laure ;
Bataille, Regis ;
Jezequel, Pascal .
BREAST CANCER RESEARCH AND TREATMENT, 2008, 109 (03) :491-501
[8]   Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer [J].
Cheang, Maggie C. U. ;
Chia, Stephen K. ;
Voduc, David ;
Gao, Dongxia ;
Leung, Samuel ;
Snider, Jacqueline ;
Watson, Mark ;
Davies, Sherri ;
Bernard, Philip S. ;
Parker, Joel S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (10) :736-750
[9]   Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [J].
Chin, Koei ;
DeVries, Sandy ;
Fridlyand, Jane ;
Spellman, Paul T. ;
Roydasgupta, Ritu ;
Kuo, Wen-Lin ;
Lapuk, Anna ;
Neve, Richard M. ;
Qian, Zuwei ;
Ryder, Tom ;
Chen, Fanqing ;
Feiler, Heidi ;
Tokuyasu, Taku ;
Kingsley, Chris ;
Dairkee, Shanaz ;
Meng, Zhenhang ;
Chew, Karen ;
Pinkel, Daniel ;
Jain, Ajay ;
Ljung, Britt Marie ;
Esserman, Laura ;
Albertson, Donna G. ;
Waldman, Frederic M. ;
Gray, Joe W. .
CANCER CELL, 2006, 10 (06) :529-541
[10]   The molecular profile of luminal B breast cancer [J].
Creighton, Chad J. .
BIOLOGICS-TARGETS & THERAPY, 2012, 6 :289-297