CaO-Based Pellets Supported by Calcium Aluminate Cements for High-Temperature CO2 Capture

被引:179
作者
Manovic, Vasilije [1 ]
Anthony, Edward J. [1 ]
机构
[1] Nat Resources Canada, CanmetENERGY, Ottawa, ON K1A 1M1, Canada
关键词
FLUIDIZED-BED; HYDROGEN-PRODUCTION; COMBUSTION; CAPACITY; SORBENTS; CYCLE; CARBONATION; TECHNOLOGY; LIMESTONES; HYDRATION;
D O I
10.1021/es901258w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of highly efficient CaO-based pellet sorbents, using inexpensive raw materials (limestones) or the spent sorbent from CO2 capture cycles, and commercially available calcium aluminate cements (CA-14, CA-25, Secar 51, and Secar 80), is described here. The pellets were prepared using untreated powdered limestones or their corresponding hydrated limes and were tested for their CO2 capture carrying capacities for 30 carbonation/calcination cycles in a thermogravimetric analyzer (TGA). Their morphology was also investigated by scanning electron microscopy (SEM) and their compositions before and after carbonation/calcination cycles were determined by X-ray diffraction (XRD). Pellets prepared in this manner showed superior behavior during CO2 capture cycles compared to natural sorbents, with the highest conversions being >50% after 30 cycles. This improved performance was attributed to the resulting substructure of the sorbent particles, i.e., a porous structure with nanoparticles incorporated. During carbonation/calcination cycles mayenite (Ca12Al14O33) was formed, which is believed to be responsible for the favorable performance of synthetic CaO-based sorbents doped with alumina compounds. An added advantage of the pellets produced here is their superior strength, offering the possibility of using them in fluidized bed combustion (FBC) systems with minimal sorbent loss due to attrition.
引用
收藏
页码:7117 / 7122
页数:6
相关论文
共 38 条
[1]   Cost structure of a postcombustion CO2 capture system using CaO [J].
Abanades, J. Carlos ;
Grasa, G. ;
Alonso, M. ;
Rodriguez, N. ;
Anthony, E. J. ;
Romeo, L. M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (15) :5523-5527
[2]   Conversion limits in the reaction of CO2 with lime [J].
Abanades, JC ;
Alvarez, D .
ENERGY & FUELS, 2003, 17 (02) :308-315
[3]   Sorbent cost and performance in CO2 capture systems [J].
Abanades, JC ;
Rubin, ES ;
Anthony, EJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (13) :3462-3466
[4]   Fluidized bed combustion systems integrating CO2 capture with CaO [J].
Abanades, JC ;
Anthony, EJ ;
Wang, JS ;
Oakey, JE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (08) :2861-2866
[5]   The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J].
Abanades, JC .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :303-306
[6]   Solid looping cycles: A new technology for coal conversion [J].
Anthony, Edward J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (06) :1747-1754
[7]   CO2 storage in geological media:: Role, means, status and barriers to deployment [J].
Bachu, Stefan .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (02) :254-273
[8]   CALCIUM OXIDE-CARBON DIOXIDE SYSTEM IN PRESSURE RANGE 1-300 ATMOSPHERES [J].
BAKER, EH .
JOURNAL OF THE CHEMICAL SOCIETY, 1962, (FEB) :464-&
[9]   Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J].
Barelli, L. ;
Bidini, G. ;
Gallorini, F. ;
Servili, S. .
ENERGY, 2008, 33 (04) :554-570
[10]   The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent [J].
Dennis, J. S. ;
Pacciani, R. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (09) :2147-2157