Machine learning for the analysis of 2D radioxenon beta gamma spectra

被引:2
作者
Armstrong, Jordan [1 ]
Carpency, Thienbao [2 ]
Scoville, James [1 ]
Sesler, Jefferson [1 ]
Hall, Robert [1 ]
机构
[1] USAFA, Dept Phys, El Paso, CO 80840 USA
[2] USAFA, Dept Phys, Thienbao Consulting LLC, El Paso, CO 80840 USA
关键词
Gradient boosting; Logistic regression; Ridge regression; Radioxenon; Beta-gamma analysis; Nuclear treaty monitoring; International monitoring system;
D O I
10.1007/s10967-020-07533-7
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Clandestine nuclear testing can be detected at a standoff distance using radioxenon beta-gamma analysis. International treaty monitoring organizations depend, in part, upon the activity ratios of various radioxenon types to determine if collected samples are the result of a weapons test or a peaceful purpose such as energy or medical isotope production. However, the currently deployed radioxenon analysis method makes assumptions about the location of energy coincidence counts on a beta-gamma spectrum, such that this method is particularly sensitive to measurement or calibration errors. We propose a machine learning method instead. By exposing a computer algorithm to many representative examples, the resultant computer model detects patterns in the data without making additional assumptions. Both a classification model predicting which radioisotopes are present and a regression model predicting concentrations of the radioisotopes are tested. This work is a proof-of-concept that machine learning can be effectively applied to radioxenon beta-gamma analysis.
引用
收藏
页码:857 / 867
页数:11
相关论文
共 24 条
[1]   Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements [J].
Biegalski, K. M. Foltz ;
Biegalski, S. R. ;
Haas, D. A. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2008, 276 (02) :407-413
[2]   Deconvolution of three-dimensional beta-gamma coincidence spectra from xenon sampling and measurement units [J].
K. M. Foltz Biegalski ;
S. R. Biegalski .
Journal of Radioanalytical and Nuclear Chemistry, 2005, 263 (1) :259-265
[3]   SDAT implementation for the analysis of radioxenon β-γ coincidence spectra [J].
Biegalski, S. ;
Flory, A. ;
Haas, D. ;
Ely, J. ;
Cooper, M. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2013, 296 (01) :471-476
[4]   SDAT: analysis of 131mXe with 133Xe interference [J].
Biegalski, S. R. F. ;
Biegalski, K. M. Foltz ;
Haas, D. A. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2009, 282 (03) :715-719
[5]  
Bishop C. M., 2006, PATTERN RECOGNITION, DOI DOI 10.1117/1.2819119
[6]   Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system [J].
Bowyer, TW ;
Schlosser, C ;
Abel, KH ;
Auer, M ;
Hayes, JC ;
Heimbigner, TR ;
McIntyre, JI ;
Panisko, ME ;
Reeder, PL ;
Satorius, H ;
Schulze, J ;
Weiss, W .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2002, 59 (02) :139-151
[7]   Field testing of collection and measurement of radioxenon for the Comprehensive Test Ban Treaty [J].
Bowyer, TW ;
Abel, KH ;
Hubbard, CW ;
Panisko, ME ;
Reeder, PL ;
Thompson, RC ;
Warner, RA .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 1999, 240 (01) :109-122
[8]  
Bowyer TW, 1996, TECHNICAL REPORT
[9]  
Chien C, 2020, PHYS THEORETICAL CHE
[10]   Redesigned β-γ radioxenon detector [J].
Cooper, Matthew W. ;
McIntyre, Justin I. ;
Bowyer, Ted W. ;
Carman, April J. ;
Hayes, James C. ;
Heimbigner, Tom R. ;
Hubbard, Charles W. ;
Lidey, Lance ;
Litke, Kevin E. ;
Morris, Scott J. ;
Ripplinger, Michael D. ;
Suarez, Reynold ;
Thompson, Robert .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 579 (01) :426-430