A continuous-state polynomial branching process

被引:20
作者
Li, Pei-Sen [1 ,2 ]
机构
[1] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Branching process; Continuous-state; Polynomial branching; Stochastic integral equation; Lamperti transformation; Extinction; Explosion; STOCHASTIC-EQUATIONS; COALESCENT; FLOWS; LIMIT; EXTINCTION; TIME;
D O I
10.1016/j.spa.2018.08.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A continuous-state polynomial branching process is constructed as the pathwise unique solution of a stochastic integral equation with absorbing boundary condition. The process can also be obtained from a spectrally positive Levy process through Lamperti type transformations. The extinction and explosion probabilities and the mean extinction and explosion times are computed explicitly. Some of those are also new for the classical linear branching process. We present necessary and sufficient conditions for the process to extinguish or explode in finite times. In the critical or subcritical case, we give a construction of the process coming down from infinity. Finally, it is shown that the continuous-state polynomial branching process arises naturally as the rescaled limit of a sequence of discrete-state processes. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2941 / 2967
页数:27
相关论文
共 36 条
[1]  
[Anonymous], 1951, P 2 BERK S MATH STAT
[2]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[3]  
Athreya K., 2012, Branching processes, Grundlehren der mathe matischen Wissenschaften
[4]   SPEED OF COMING DOWN FROM INFINITY FOR BIRTH-AND-DEATH PROCESSES [J].
Bansaye, Vincent ;
Meleard, Sylvie ;
Richard, Mathieu .
ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) :1183-1210
[5]   Hitting properties and non-uniqueness for SDEs driven by stable processes [J].
Berestycki, J. ;
Doering, L. ;
Mytnik, L. ;
Zambotti, L. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (03) :918-940
[6]   Asymptotic sampling formulae for Λ-coalescents [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Limic, Vlada .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (03) :715-731
[7]   THE Λ-COALESCENT SPEED OF COMING DOWN FROM INFINITY [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Limic, Vlada .
ANNALS OF PROBABILITY, 2010, 38 (01) :207-233
[8]  
Bertoin J, 2000, PROBAB THEORY REL, V117, P249
[9]   Stochastic flows associated to coalescent processes II: Stochastic differential equations [J].
Bertoin, J ;
Le Gall, JF .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :307-333
[10]   Stochastic flows associated to coalescent processes [J].
Bertoin, J ;
Le Gall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :261-288