Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence

被引:67
作者
Höflich, J
Berninsone, P
Göbel, C
Gravato-Nobre, MJ
Libby, BJ
Darby, C
Politz, SM
Hodgkin, J
Hirschberg, CB
Baumeister, R
机构
[1] Univ Munich, ABI Mol Neuogenet, D-80336 Munich, Germany
[2] Inst Biol 3, D-79104 Freiburg, Germany
[3] Boston Univ, Dept Mol & Cell Biol, Sch Dent Med, Boston, MA 02118 USA
[4] Univ Oxford, Dept Biochem, Genet Unit, Oxford OX1 3QU, England
[5] Worcester Polytech Inst, Dept Biol & Biotechnol, Worcester, MA 01609 USA
[6] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA
关键词
D O I
10.1074/jbc.M402429200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.
引用
收藏
页码:30440 / 30448
页数:9
相关论文
共 60 条
[51]  
Sambrook J, 1989, MOL CLONING LAB MANU
[52]   LOCALIZATION OF FMRF AMIDE-LIKE PEPTIDES IN CAENORHABDITIS-ELEGANS [J].
SCHINKMANN, K ;
LI, C .
JOURNAL OF COMPARATIVE NEUROLOGY, 1992, 316 (02) :251-260
[53]   Human and Drosophila UDP-galactose transporters transport UDP-N-acetylgalactosamine in addition to UDP-galactose [J].
Segawa, H ;
Kawakita, M ;
Ishida, N .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (01) :128-138
[54]  
Silverman MA, 1997, J NEMATOL, V29, P296
[55]   Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi [J].
Simmer, F ;
Tijsterman, M ;
Parrish, S ;
Koushika, SP ;
Nonet, ML ;
Fire, A ;
Ahringer, J ;
Plasterk, RHA .
CURRENT BIOLOGY, 2002, 12 (15) :1317-1319
[56]   SOME OBSERVATIONS ON MOLTING IN CAENORHABDITIS-ELEGANS [J].
SINGH, RN ;
SULSTON, JE .
NEMATOLOGICA, 1978, 24 (01) :63-&
[57]  
SMITH WL, 1975, J BIOL CHEM, V250, P3426
[58]   Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis [J].
Tan, MW ;
Mahajan-Miklos, S ;
Ausubel, FM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :715-720
[59]   Caenorhabditis elegans exoskeleton collagen COL-19:: An adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology [J].
Thein, MC ;
McCormack, G ;
Winter, AD ;
Johnstone, IL ;
Shoemaker, CB ;
Page, AP .
DEVELOPMENTAL DYNAMICS, 2003, 226 (03) :523-539
[60]   Presenilin is required for proper morphology and function of neurons in C-elegans [J].
Wittenburg, N ;
Eimer, S ;
Lakowski, B ;
Röhrig, S ;
Rudolph, C ;
Baumeister, R .
NATURE, 2000, 406 (6793) :306-309