High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

被引:6
作者
Lopez, O. E. [1 ]
Guazzotto, L. [1 ]
机构
[1] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
关键词
STATIONARY MHD EQUATIONS; MAGNETOHYDRODYNAMIC EQUILIBRIA; TOKAMAK EQUILIBRIUM; PLASMA; ROTATION; TRANSPORT; CONFINEMENT; STABILITY; TORUS; MODES;
D O I
10.1063/1.4976837
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   Transport and confinement in the mega ampere spherical tokamak (MAST) plasma [J].
Akers, RJ ;
Ahn, JW ;
Antar, GY ;
Appel, LC ;
Applegate, D ;
Brickley, C ;
Bunting, C ;
Carolan, PG ;
Challis, CD ;
Conway, NJ ;
Counsell, GF ;
Dendy, RO ;
Dudson, B ;
Field, AR ;
Kirk, A ;
Lloyd, B ;
Meyer, HF ;
Morris, AW ;
Patel, A ;
Roach, CM ;
Rohzansky, V ;
Sykes, A ;
Taylor, D ;
Tournianski, MR ;
Valovic, M ;
Wilson, HR ;
Axon, KB ;
Buttery, RJ ;
Ciric, D ;
Cunningham, G ;
Dowling, J ;
Dunstan, MR ;
Gee, SJ ;
Gryaznevich, MP ;
Helander, P ;
Keeling, DL ;
Knight, PJ ;
Lott, F ;
Loughlin, MJ ;
Manhood, SJ ;
Martin, R ;
McArdle, GJ ;
Price, MN ;
Stammers, K ;
Storrs, J ;
Walsh, MJ .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (12 A) :A175-A204
[3]   Analytical solutions to the Grad-Shafranov equation [J].
Atanasiu, CV ;
Günter, S ;
Lackner, K ;
Miron, IG .
PHYSICS OF PLASMAS, 2004, 11 (07) :3510-3518
[4]   AXISYMMETRICAL MAGNETOHYDRODYNAMIC EQUATIONS - EXACT-SOLUTIONS FOR STATIONARY INCOMPRESSIBLE FLOWS [J].
BACCIOTTI, F ;
CHIUDERI, C .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (01) :35-43
[5]   Radial discontinuities in tokamak magnetohydrodynamic equilibria with poloidal flow [J].
Betti, R ;
Freidberg, JP .
PHYSICS OF PLASMAS, 2000, 7 (06) :2439-2448
[6]  
Butkov E., 1968, Mathematical Physics
[7]   "One size fits all" analytic solutions to the Grad-Shafranov equation [J].
Cerfon, Antoine J. ;
Freidberg, Jeffrey P. .
PHYSICS OF PLASMAS, 2010, 17 (03)
[8]   Toroidal rotation in ICRF-heated H-modes on JET [J].
Eriksson, LG ;
Righi, E ;
Zastrow, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (01) :27-42
[9]  
Freidberg J, 2014, IDEAL MHD, P1, DOI 10.1017/CBO9780511795046
[10]  
Freidberg J. F., 1987, Ideal Magnetohydrodynamics