Limits on stellar structures in Lovelock theories of gravity

被引:29
作者
Chakraborty, Sumanta [1 ,2 ]
Dadhich, Naresh [3 ]
机构
[1] Indian Assoc Cultivat Sci, Sch Math & Computat Sci, Kolkata 700032, India
[2] Indian Assoc Cultivat Sci, Sch Phys Sci, Kolkata 700032, India
[3] IUCAA, Post Bag 4, Pune 411007, Maharashtra, India
关键词
D O I
10.1016/j.dark.2020.100658
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the bound on the compactness of a stellar object in pure Lovelock theories of arbitrary order in arbitrary spacetime dimensions, involving electromagnetic field. The bound we derive for a generic pure Lovelock theory, reproduces the known results in four dimensional Einstein gravity. Both the case of a charged shell and that of a charge sphere demonstrates that for a given spacetime dimension, stars in general relativity are more compact than the stars in pure Lovelock theories. In addition, as the strength of the Maxwell field increases, the stellar structures become more compact, i.e., the radius of the star decreases. In the context of four dimensional Einstein-Gauss-Bonnet gravity as well, an increase in the strength of the Gauss-Bonnet coupling (behaving as an effective electric charge), increases the compactness of the star. Implications are discussed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 40 条
[1]  
Ai W.Y., ARXIV200402858GRQC
[2]   Sharp bounds on 2m/r of general spherically symmetric static objects [J].
Andreasson, Hakan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (08) :2243-2266
[3]   Bounds on M/R for charged objects with positive cosmological constant [J].
Andreasson, Hakan ;
Boehmer, Christian G. ;
Mussa, Atifah .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (09)
[4]   Maximum mass of a spherically symmetric isotropic star [J].
Barraco, D ;
Hamity, VH .
PHYSICAL REVIEW D, 2002, 65 (12) :5
[5]   Minimum mass-radius ratio for charged gravitational objects [J].
Boehmer, C. G. ;
Harko, T. .
GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (06) :757-775
[6]   GENERAL RELATIVISTIC FLUID SPHERES [J].
BUCHDAHL, HA .
PHYSICAL REVIEW, 1959, 116 (04) :1027-1034
[7]   On Lovelock analogs of the Riemann tensor [J].
Camanho, Xian O. ;
Dadhich, Naresh .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (02)
[8]   Quasinormal Modes and Strong Cosmic Censorship [J].
Cardoso, Vitor ;
Costa, Joao L. ;
Destounis, Kyriakos ;
Hintz, Peter ;
Jansen, Aron .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)
[9]   1/r potential in higher dimensions [J].
Chakraborty, Sumanta ;
Dadhich, Naresh .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01)
[10]  
Chakraborty S, 2017, FUND THEOR PHYS, V187, P43, DOI 10.1007/978-3-319-51700-1_5