Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

被引:57
作者
Cao, Wanjun [1 ,2 ,3 ]
Li, Yangxing [5 ]
Fitch, Brian [5 ]
Shih, Jonathan [1 ,2 ,3 ]
Doung, Tien [6 ]
Zheng, Jim [1 ,2 ,3 ,4 ]
机构
[1] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
[2] Florida State Univ, Tallahassee, FL 32310 USA
[3] Florida State Univ, Aeroprop Mechatron & Energy AME Ctr, Tallahassee, FL 32310 USA
[4] Florida State Univ, CAPS, Tallahassee, FL 32310 USA
[5] FMC Lithium Div, Bessemer City, NC 28016 USA
[6] US DOE, Off Vehicle Technol, Annandale, VA 22003 USA
关键词
Li-ion capacitor; Activated carbon; Hard carbon; Cathode binder; SLMP loadings; Types of separator; DOUBLE-LAYER CAPACITOR; ELECTROCHEMICAL PERFORMANCE; ENERGY DENSITY; NEGATIVE ELECTRODES; CYCLE PERFORMANCE; CARBON; IMPROVEMENT; GRAPHITE;
D O I
10.1016/j.jpowsour.2014.06.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP (R)) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:841 / 847
页数:7
相关论文
共 37 条
[1]   Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor [J].
Aida, Taira ;
Murayama, Ichiro ;
Yamada, Koji ;
Morita, Masayuki .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (08) :A798-A804
[2]   Improvement in cycle performance of a high-voltage hybrid electrochemical capacitor [J].
Aida, Taira ;
Murayama, Ichiro ;
Yamada, Koji ;
Morita, Masayuki .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (04) :A93-A96
[3]  
Amatucci G., 2001, P 11 INT SEM DOUBL L
[4]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[5]   Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors [J].
Boeckenfeld, N. ;
Kuehnel, R. -S. ;
Passerini, S. ;
Winter, M. ;
Balducci, A. .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :4136-4142
[6]   A study about the use of carbon coated iron oxide-based electrodes in lithium-ion capacitors [J].
Brandt, A. ;
Balducci, A. .
ELECTROCHIMICA ACTA, 2013, 108 :219-225
[7]   Development and characterization of Li-ion capacitor pouch cells [J].
Cao, W. J. ;
Shih, J. ;
Zheng, J. P. ;
Doung, T. .
JOURNAL OF POWER SOURCES, 2014, 257 :388-393
[8]   The Effect of Cathode and Anode Potentials on the Cycling Performance of Li-Ion Capacitors [J].
Cao, W. J. ;
Zheng, J. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1572-A1576
[9]   Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes [J].
Cao, W. J. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2012, 213 :180-185
[10]  
Dover B. T., 1998, United States Patent, Patent No. [5,776,369, 5776369]