CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana

被引:10
|
作者
Wang, Jinling [1 ,2 ]
Zhang, Qian [1 ]
Yu, Qin [1 ]
Peng, Lu [1 ]
Wang, Jianmei [1 ]
Dai, Qilin [3 ]
Yang, Yi [1 ]
Li, Xiaoyi [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610065, Sichuan, Peoples R China
[2] Mianyang Teachers Coll, Coll Sci & Biotechnol, Mianyang 621000, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Life Sci & Engn, Mianyang 621010, Peoples R China
关键词
Kinase; Abscisic acid; ABA receptors; Abiotic stress; Signal pathway; KINASE; PTO; RESISTANCE; RECEPTORS; PROTEINS; STOMATA;
D O I
10.1016/j.bbrc.2019.03.180
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abscisic acid (ABA), one of phytohormones, is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which perceive ABA and then inhibit PP2Cs to activate SnRK2s. Here, we report that a putative receptor-like cytoplasmic kinase (RLCK) in Arabidopsis named CARK6, which is a member of cytosolic ABA receptor kinases. We confirm that CARK6 interacts with ABA receptors, RCAR11-14 in vitro and in vivo. Induced overexpression of CARK6 in Arabidopsis enhances sensitivity to ABA by inhibition of seed germination and root elongation, and promotes the drought resistance. However, loss-of-function seedlings of cark6 are less sensitive to ABA and show reduced drought stress response with respect to water loss and stomatal aperture. In transgenic Arabidopsis complementation lines in the cark6 mutant background, stress responsivity was restored by CARK6. In conclusion, our data provide evidence that CARK6 plays a positive role in ABA signaling in Arabidopsis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 464
页数:5
相关论文
共 50 条
  • [21] The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid
    CHEN Xiaoting LIN Jie SHAO Xuefeng OU Xiaoming WANG Zonghua and LU Guodong College of Life Sciences Fujian Agriculture and Forestry University Fuzhou PRChina Key Laboratory of BioPesticide and Chemistry Biology Ministry of Education Fuzhou PRChina
    AgriculturalSciencesinChina, 2009, 8 (07) : 828 - 834
  • [22] Encapsulated Abscisic Acid as a Powerful Tool to Improve Arabidopsis thaliana Salt Stress Tolerance
    Gomez-Cadenas, A.
    Sampedro-Guerrero, J.
    Dalmau-Balaguer, A.
    Avendano, V. A.
    Clausell-Terol, C.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S132 - S133
  • [23] Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana
    Cramer, GR
    Jones, RL
    PLANT CELL AND ENVIRONMENT, 1996, 19 (11): : 1291 - 1298
  • [24] Two Abscisic Acid-Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana
    Wang, Kun
    Guo, Qiang
    Froehlich, John E.
    Hersh, Hope Lynn
    Zienkiewicz, Agnieszka
    Howe, Gregg A.
    Benning, Christoph
    PLANT CELL, 2018, 30 (05): : 1006 - 1022
  • [25] High Humidity Induces Abscisic Acid 8′-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis
    Okamoto, Masanori
    Tanaka, Yoko
    Abrams, Suzanne R.
    Kamiya, Yuji
    Seki, Motoaki
    Nambara, Eiji
    PLANT PHYSIOLOGY, 2009, 149 (02) : 825 - 834
  • [26] ALA6, a P4-type ATPase, Is Involved in Heat Stress Responses in Arabidopsis thaliana
    Niu, Yue
    Qian, Dong
    Liu, Baiyun
    Ma, Jianchao
    Wan, Dongshi
    Wang, Xinyu
    He, Wenliang
    Xiang, Yun
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [27] Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions
    de Ollas, Carlos
    Arbona, Vicent
    Gomez-Cadenas, Aurelio
    PLANT SIGNALING & BEHAVIOR, 2015, 10 (12)
  • [28] miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner
    Jian Bo Song
    Shuai Gao
    Di Sun
    Hua Li
    Xia Xia Shu
    Zhi Min Yang
    BMC Plant Biology, 13
  • [29] miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner
    Song, Jian Bo
    Gao, Shuai
    Sun, Di
    Li, Hua
    Shu, Xia Xia
    Yang, Zhi Min
    BMC PLANT BIOLOGY, 2013, 13
  • [30] Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana
    Han, Woong
    Rong, Honglin
    Zhang, Hanma
    Wang, Myeong-Hyeon
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 378 (04) : 695 - 700