CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana

被引:10
|
作者
Wang, Jinling [1 ,2 ]
Zhang, Qian [1 ]
Yu, Qin [1 ]
Peng, Lu [1 ]
Wang, Jianmei [1 ]
Dai, Qilin [3 ]
Yang, Yi [1 ]
Li, Xiaoyi [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610065, Sichuan, Peoples R China
[2] Mianyang Teachers Coll, Coll Sci & Biotechnol, Mianyang 621000, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Life Sci & Engn, Mianyang 621010, Peoples R China
关键词
Kinase; Abscisic acid; ABA receptors; Abiotic stress; Signal pathway; KINASE; PTO; RESISTANCE; RECEPTORS; PROTEINS; STOMATA;
D O I
10.1016/j.bbrc.2019.03.180
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abscisic acid (ABA), one of phytohormones, is induced in response to abiotic stress to mediate plant acclimation to environmental challenge. Key players of the ABA-signaling pathway are the ABA-binding receptors (RCAR/PYR1/PYL), which perceive ABA and then inhibit PP2Cs to activate SnRK2s. Here, we report that a putative receptor-like cytoplasmic kinase (RLCK) in Arabidopsis named CARK6, which is a member of cytosolic ABA receptor kinases. We confirm that CARK6 interacts with ABA receptors, RCAR11-14 in vitro and in vivo. Induced overexpression of CARK6 in Arabidopsis enhances sensitivity to ABA by inhibition of seed germination and root elongation, and promotes the drought resistance. However, loss-of-function seedlings of cark6 are less sensitive to ABA and show reduced drought stress response with respect to water loss and stomatal aperture. In transgenic Arabidopsis complementation lines in the cark6 mutant background, stress responsivity was restored by CARK6. In conclusion, our data provide evidence that CARK6 plays a positive role in ABA signaling in Arabidopsis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 464
页数:5
相关论文
共 50 条
  • [1] CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana
    Yuan, Congying
    Ai, Jianping
    Chang, Hongping
    Xiao, Wenjun
    Liu, Lu
    Zhang, Cheng
    He, Zhuang
    Huang, Ji
    Li, Jinyan
    Guo, Xinhong
    JOURNAL OF PLANT RESEARCH, 2017, 130 (03) : 587 - 598
  • [2] CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana
    Congying Yuan
    Jianping Ai
    Hongping Chang
    Wenjun Xiao
    Lu Liu
    Cheng Zhang
    Zhuang He
    Ji Huang
    Jinyan Li
    Xinhong Guo
    Journal of Plant Research, 2017, 130 : 587 - 598
  • [3] Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana
    Liu, Yujia
    Ji, Xiaoyu
    Zheng, Lei
    Nie, Xianguang
    Wang, Yucheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) : 9979 - 9998
  • [4] G protein and PLDδ are involved in JA to regulate osmotic stress responses in Arabidopsis thaliana
    Yang, Ning
    Zhang, Yue
    Chen, Lu
    Wang, Wei
    Liu, Ruirui
    Gao, Run
    Zhou, Yaping
    Li, Hui
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2021, 26
  • [5] Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana
    Benson, Chantel L.
    Kepka, Michal
    Wunschel, Christian
    Rajagopalan, Nandhakishore
    Nelson, Ken M.
    Christmann, Alexander
    Abrams, Suzanne R.
    Grill, Erwin
    Loewen, Michele C.
    PHYTOCHEMISTRY, 2015, 113 : 96 - 107
  • [6] AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis
    Shuqing Cao
    Li Jiang
    Shiyong Song
    Ran Jing
    Guosheng Xu
    Cellular & Molecular Biology Letters, 2006, 11 : 526 - 535
  • [7] AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis
    Cao, Shuqing
    Jiang, Li
    Song, Shiyong
    Jing, Ran
    Xu, Guosheng
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2006, 11 (04) : 526 - 535
  • [8] LRR1 involved in the abscisic acid signaling pathway to regulate the early growth and development of Arabidopsis thaliana
    Xie, Xiaoyang
    Wei, Lei
    Han, Hongyuan
    Jing, Bingnian
    Liu, Yuqing
    Zhou, Yong
    Li, Ningjie
    Li, Xiao
    Wang, Wei
    PEERJ, 2024, 12
  • [9] Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium
    Sharma, SS
    Kumar, V
    JOURNAL OF PLANT PHYSIOLOGY, 2002, 159 (12) : 1323 - 1327
  • [10] Abscisic Acid Is Involved in the Resistance Response of Arabidopsis thaliana Against Meloidogyne paranaensis
    Yop, Geovana de Souza
    Gair, Luiz Henrique Voigt
    da Silva, Victoria Stern
    Machado, Andressa Cristina Zamboni
    Santiago, Debora Cristina
    Tomaz, Juarez Pires
    PLANT DISEASE, 2023, 107 (09) : 2778 - 2783