An explicit I-V model for photovoltaic module technologies

被引:38
作者
Boutana, N. [1 ]
Mellit, A. [1 ,2 ]
Haddad, S. [1 ]
Rabhi, A. [3 ]
Pavan, A. Massi [4 ,5 ]
机构
[1] Mohamed Seddik Benyahia Univ Jijel, Fac Sci & Technol, Dept Elect, Renewable Energy Lab, Ouled Aissa,POB 98, Jijel 18000, Algeria
[2] Int Ctr Theoret Phys ICFP, Starada Costiera,11, I-34151 Trieste, Italy
[3] Univ Picardie Jules Verne, Modeling Informat & Syst Lab, Amiens, France
[4] Univ Trieste, Dept Engn & Architecture, Via Valerio,6-A, Trieste, Italy
[5] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
关键词
Photovoltaic module; PV technologies; Explicit model; Modeling; Exprimental validation; LAMBERT W-FUNCTION; SOLAR-CELL; VALIDATION;
D O I
10.1016/j.enconman.2017.02.016
中图分类号
O414.1 [热力学];
学科分类号
摘要
Electrical behavior predicting of photovoltaic modules, at different operating climatic conditions, remains a crucial issue for the estimation of output power from photovoltaic (PV) plants. In this paper, a simplified explicit model to describe the behavior of PV modules is introduced; the model is based on a simple mathematical equation relating the current to the voltage (I-V). The model requires the estimation of three parameters which are: open circuit voltage (V-oc,), the short circuit current (I-sc) and a shape parameter (S). The model validation has been performed through experimental measurements for four different PV modules technologies (mono-crystalline Silicon, multi-crystalline Silicon, Copper Indium Gallium Selenide and Cadmium Telluride) at two different locations. To show its effectiveness, the model is then compared with four explicit models. Results showed that the model accurately predicts the I-V characteristics for the four examined PV modules at different range of solar irradiance levels and cell temperatures. Moreover, the developed model performs better than other investigated models in terms of accuracy and simplicity. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 412
页数:13
相关论文
共 22 条
  • [1] [Anonymous], 2012 IEEE ENERGYTECH
  • [2] [Anonymous], 2009 INT C CLEAN EL
  • [3] BRANO VL, 2010, SOLAR ENERGY MAT SOL, V94, P1358, DOI DOI 10.1016/J.SOLMAT.2010.04.003
  • [4] Introducing the fractional-order Darwinian PSO
    Couceiro, Micael S.
    Rocha, Rui P.
    Fonseca Ferreira, N. M.
    Tenreiro Machado, J. A.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 343 - 350
  • [5] An explicit J-V model of a solar cell for simple fill factor calculation
    Das, Abhik Kumar
    [J]. SOLAR ENERGY, 2011, 85 (09) : 1906 - 1909
  • [6] Improvement and validation of a model for photovoltaic array performance
    De Soto, W
    Klein, SA
    Beckman, WA
    [J]. SOLAR ENERGY, 2006, 80 (01) : 78 - 88
  • [7] A simplified model for photovoltaic modules based on improved translation equations
    Ding, Kun
    Zhang, Jingwei
    Bian, Xingao
    Xu, Junwei
    [J]. SOLAR ENERGY, 2014, 101 : 40 - 52
  • [8] Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics
    Fathabadi, Hassan
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 253 - 259
  • [9] Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization
    Ghamisi, Pedram
    Couceiro, Micael S.
    Martins, Fernando M. L.
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2382 - 2394
  • [10] SOLAR-CELL FILL FACTORS - GENERAL GRAPH AND EMPIRICAL EXPRESSIONS
    GREEN, MA
    [J]. SOLID-STATE ELECTRONICS, 1981, 24 (08) : 788 - 789