AN ITERATIVE CONSTRUCTION OF CONFIDENCE INTERVALS FOR A PROPORTION

被引:7
|
作者
Wang, Weizhen [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
基金
美国国家科学基金会;
关键词
Binomial distribution; coverage probability; set inclusion; BINOMIAL PROPORTION; APPROXIMATE; LIMITS;
D O I
10.5705/ss.2012.257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the criterion of the set inclusion, two-sided admissible 1 a confidence intervals for the probability of success for a binomial random variable are constructed using a new iterative method that is based on a direct analysis of coverage probability. A refined Clopper-Pearson interval is derived and compared with the Blyth-Still-Casella interval, and is recommended for statistical practice due to its performance and accessibility. A generalization is provided to the case of a discrete sample space with a single parameter distribution. Some details and an R-code that computes the refined Clopper-Pearson interval are given in Supplementary Materials.
引用
收藏
页码:1389 / 1410
页数:22
相关论文
共 50 条
  • [1] CONFIDENCE INTERVALS FOR A BINOMIAL PROPORTION
    Pobocikova, Ivana
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 791 - 800
  • [2] Confidence intervals for the proportion of conformance
    Lee, Chung-Han
    Wang, Hsiuying
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (08) : 1564 - 1579
  • [3] Smallest confidence intervals for one binomial proportion
    Wang, Weizhen
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) : 4293 - 4306
  • [4] Exact confidence coefficients of confidence intervals for a binomial proportion
    Wang, Hsiuying
    STATISTICA SINICA, 2007, 17 (01) : 361 - 368
  • [5] Confidence intervals for a binomial proportion and asymptotic expansions
    Brown, LD
    Cai, TT
    DasGupta, A
    ANNALS OF STATISTICS, 2002, 30 (01) : 160 - 201
  • [6] A COMPARISON OF CONFIDENCE INTERVALS FOR A PROPORTION AND CRITERIA FOR THEIR APPLICATION
    Reyes-Cervantes, Hortensia
    Almendra-Arao, Felix
    Morales-Cortes, Marcos
    ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 58 (01) : 35 - 43
  • [7] A comparison of some confidence intervals for a binomial proportion based on a shrinkage estimator
    Almendra-Arao, Felix
    Reyes-Cervantes, Hortensia
    Morales-Cortes, Marcos
    OPEN MATHEMATICS, 2023, 21 (01):
  • [8] Confidence Intervals for a Low Binomial Proportion
    Ryu, Jea-Bok
    Lee, Seung-Joo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2006, 19 (02) : 217 - 230
  • [9] Generalised Clopper-Pearson confidence intervals for the binomial proportion
    Puza, B
    O'Neill, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (06) : 489 - 508
  • [10] Tandem-width sequential confidence intervals for a Bernoulli proportion
    Yaacoub, Tony
    Goldsman, David
    Mei, Yajun
    Moustakides, George, V
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (02): : 163 - 183