Robust latent low rank representation for subspace clustering

被引:54
作者
Zhang, Hongyang [1 ]
Lin, Zhouchen [1 ]
Zhang, Chao [1 ]
Gao, Junbin [2 ]
机构
[1] Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing, Peoples R China
[2] Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
基金
澳大利亚研究理事会;
关键词
Subspace clustering; Latent low rank representation;
D O I
10.1016/j.neucom.2014.05.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace clustering has found wide applications in machine learning, data mining, and computer vision. Latent Low Rank Representation (LatLRR) is one of the state-of-the-art methods for subspace clustering. However, its effectiveness is undermined by a recent discovery that the solution to the noiseless LatLRR model is non-unique. To remedy this issue, we propose choosing the sparest solution in the solution set. When there is noise, we further propose preprocessing the data with robust PCA. Experiments on both synthetic and real data demonstrate the advantage of our robust LatLRR over state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 373
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 2010, ICML 10 JUNE 21 24 2
[2]  
[Anonymous], ARXIV11071561
[3]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[4]  
Bull G., 2012, PUBL N CAROLINA COOP, P1
[5]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[6]  
Cheng B, 2011, IEEE I CONF COMP VIS, P2439, DOI 10.1109/ICCV.2011.6126528
[7]   CLUSTERING DISJOINT SUBSPACES VIA SPARSE REPRESENTATION [J].
Elhamifar, Ehsan ;
Vidal, Rene .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :1926-1929
[8]  
Elhamifar E, 2009, PROC CVPR IEEE, P2782
[9]  
Favaro P, 2011, PROC CVPR IEEE, P1801, DOI 10.1109/CVPR.2011.5995365
[10]  
Hongyang Zhang, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P226, DOI 10.1007/978-3-642-40991-2_15