Spectroscopic signatures of ozone at the air-water interface and photochemistry implications

被引:55
作者
Anglada, Josep M. [1 ]
Martins-Costa, Marilia [2 ,3 ]
Ruiz-Lopez, Manuel F. [2 ,3 ]
Francisco, Joseph S. [4 ]
机构
[1] CSIC, Inst Quim Avancada Catalunya, Dept Quim Biol & Modelitzacio Mol, E-08034 Barcelona, Spain
[2] Univ Lorraine, Lab Struct & React Syst Mol Complexes, F-54506 Vandoeuvre Les Nancy, France
[3] CNRS, Joint Res Unit 7565, F-54506 Vandoeuvre Les Nancy, France
[4] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
atmospheric chemistry; heterogeneous processes; reactive oxidant species; computer simulations; GROUND-STATE; OH; CHEMISTRY; COMPLEX; CLOUDS; TROPOSPHERE; PHOTOLYSIS; ATMOSPHERE; SOLVATION; CHAPPUIS;
D O I
10.1073/pnas.1411727111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
First-principles simulations suggest that additional OH formation in the troposphere can result from ozone interactions with the surface of cloud droplets. Ozone exhibits an affinity for the air-water interface, which modifies its UV and visible light spectroscopic signatures and photolytic rate constant in the troposphere. Ozone cross sections on the red side of the Hartley band (290- to 350-nm region) and in the Chappuis band (450-700 nm) are increased due to electronic ozone-water interactions. This effect, combined with the potential contribution of the O-3 + h nu -> O(P-3) + O-2(X-3 Sigma(-)(g)) photolytic channel at the interface, leads to an enhancement of the OH radical formation rate by four orders of magnitude. This finding suggests that clouds can influence the overall oxidizing capacity of the troposphere on a global scale by stimulating the production of OH radicals through ozone photolysis by UV and visible light at the air-water interface.
引用
收藏
页码:11618 / 11623
页数:6
相关论文
共 40 条
  • [1] [Anonymous], 2006, ATMOS CHEM PHYS
  • [2] Argonne National Laboratory, 2014, ACT THERM TABL
  • [3] Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K
    Axson, J. L.
    Washenfelder, R. A.
    Kahan, T. F.
    Young, C. J.
    Vaida, V.
    Brown, S. S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (22) : 11581 - 11590
  • [4] POTENTIAL-ENERGY SURFACES OF OZONE IN ITS GROUND-STATE AND IN THE LOWEST-LYING 8 EXCITED-STATES
    BANICHEVICH, A
    PEYERIMHOFF, SD
    GREIN, F
    [J]. CHEMICAL PHYSICS, 1993, 178 (1-3) : 155 - 188
  • [5] Crossed-beams and theoretical studies of the O(3P) + H2O-HO2 + h reaction excitation function
    Brunsvold, Amy L.
    Zhang, Jianming
    Upadhyaya, Hari P.
    Minton, Timothy K.
    Camden, Jon P.
    Paci, Jeffrey T.
    Schatz, George C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (43) : 10907 - 10913
  • [6] Global potential energy surfaces for O(3P)+H2O(1A1) collisions
    Conforti, Patrick F.
    Braunstein, Matthew
    Braams, Bastiaan J.
    Bowman, Joel M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (16)
  • [7] Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs
    Di Carlo, P
    Brune, WH
    Martinez, M
    Harder, H
    Lesher, R
    Ren, XR
    Thornberry, T
    Carroll, MA
    Young, V
    Shepson, PB
    Riemer, D
    Apel, E
    Campbell, C
    [J]. SCIENCE, 2004, 304 (5671) : 722 - 725
  • [8] Interaction between OH radical and the water interface
    Du, Shiyu
    Francisco, Joseph S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (21) : 4826 - 4835
  • [9] Finlayson-Pitts B.J., 1986, Atmospheric Chemistry. Fundamentals and Experimental Techniques
  • [10] Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols
    Finlayson-Pitts, Barbara J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (36) : 7760 - 7779