Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques

被引:122
作者
Freimuth, F. [1 ]
Bluegel, S.
Mokrousov, Y.
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
关键词
LOCALIZED WANNIER FUNCTIONS; DOMAIN-WALLS; WEAK FERROMAGNETISM; DYNAMICS; LAYER;
D O I
10.1088/0953-8984/26/10/104202
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Recent experiments on current-induced domain-wall motion in chiral domain walls reveal important contributions both from spin-orbit torques (SOTs) and from the Dzyaloshinskii-Moriya interaction (DMI). We derive a Berry phase expression for the DMI and show that within this Berry phase theory DMI and SOTs are intimately related, in a way formally analogous to the relation between orbital magnetization (OM) and anomalous Hall effect (AHE). We introduce the concept of the twist torque moment, which probes the internal twist of wavepackets in chiral magnets in a similar way as the orbital moment probes the wavepacket's internal self-rotation. We propose to interpret the Berry phase theory of DMI as a theory of spiralization in analogy to the modern theory of OM. We show that the twist torque moment and the spiralization together give rise to a Berry phase governing the response of the SOT to thermal gradients, in analogy to the intrinsic anomalous Nernst effect. The Berry phase theory of DMI is computationally very efficient because it only needs the electronic structure of the collinear magnetic system as input. As an application of the formalism we compute the DMI in Co/Pt(111), O/Co/Pt(111) and Al/Co/Pt(111) magnetic bi- and trilayers and show that the DMI is highly anisotropic in these systems.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals [J].
Ceresoli, Davide ;
Thonhauser, T. ;
Vanderbilt, David ;
Resta, R. .
PHYSICAL REVIEW B, 2006, 74 (02)
[2]   Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field [J].
Chernyshov, Alexandr ;
Overby, Mason ;
Liu, Xinyu ;
Furdyna, Jacek K. ;
Lyanda-Geller, Yuli ;
Rokhinson, Leonid P. .
NATURE PHYSICS, 2009, 5 (09) :656-659
[3]   A THERMODYNAMIC THEORY OF WEAK FERROMAGNETISM OF ANTIFERROMAGNETICS [J].
DZYALOSHINSKY, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1958, 4 (04) :241-255
[4]   Anisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theory [J].
Ebert, H. ;
Mankovsky, S. .
PHYSICAL REVIEW B, 2009, 79 (04)
[5]  
Emori S, 2013, NAT MATER, V12, P611, DOI [10.1038/NMAT3675, 10.1038/nmat3675]
[6]   Atomic-scale spin spiral with a unique rotational sense:: Mn monolayer on W(001) [J].
Ferriani, P. ;
von Bergmann, K. ;
Vedmedenko, E. Y. ;
Heinze, S. ;
Bode, M. ;
Heide, M. ;
Bihlmayer, G. ;
Bluegel, S. ;
Wiesendanger, R. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[7]   Maximally localized Wannier functions within the FLAPW formalism [J].
Freimuth, F. ;
Mokrousov, Y. ;
Wortmann, D. ;
Heinze, S. ;
Bluegel, S. .
PHYSICAL REVIEW B, 2008, 78 (03)
[8]  
Freimuth F, 2013, ARXIV13078085
[9]  
Freimuth F., 2013, ARXIV13054873
[10]   Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets [J].
Garate, Ion ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2009, 80 (13)