Possible mechanism of adhesion in a mica supported phospholipid bilayer

被引:10
|
作者
Pertsin, Alexander [1 ,2 ]
Grunze, Michael [1 ,3 ]
机构
[1] Heidelberg Univ, D-69120 Heidelberg, Germany
[2] Russian Acad Sci, Inst Organoelement Cpds, Moscow 117991, Russia
[3] Karlsruhe Inst Technol, Inst Funct Interfaces, D-76344 Eggenstein Leopoldshafen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 18期
关键词
MOLECULAR-DYNAMICS SIMULATION; SELF-ASSEMBLED MONOLAYERS; MONTE-CARLO SIMULATIONS; LIPID-BILAYERS; WATER INTERFACE; FORCE-FIELD; MEMBRANES; MUSCOVITE; SURFACES; SYSTEMS;
D O I
10.1063/1.4875020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Chitosan-induced restructuration of a mica-supported phospholipid bilayer: An atomic force microscopy study
    Fang, N
    Chan, V
    BIOMACROMOLECULES, 2003, 4 (06) : 1596 - 1604
  • [2] Supported phospholipid bilayer at the Conductive Interface
    Sokolova, Romana
    Kocabova, Jana
    Kolivoska, Viliam
    Gal, Miroslav
    XXXVII MODERNI ELEKTROCHEMICKE METODY, 2017, : 190 - 193
  • [3] Carbon nanotube supported single phospholipid bilayer
    Gagner, Jennifer
    Johnson, Hannah
    Watkins, Erik
    Li, Qingwen
    Terrones, Mauricio
    Majewski, Jaroslaw
    LANGMUIR, 2006, 22 (26) : 10909 - 10911
  • [4] Influence of (phospho)lipases on properties of mica supported phospholipid layers
    Jurak, Malgorzata
    Chibowski, Emil
    APPLIED SURFACE SCIENCE, 2010, 256 (21) : 6304 - 6312
  • [5] A phospholipid bilayer supported under a polymerized Langmuir film
    Saccani, J
    Castano, S
    Desbat, B
    Blaudez, D
    BIOPHYSICAL JOURNAL, 2003, 85 (06) : 3781 - 3787
  • [6] Diffusion in hydrogel-supported phospholipid bilayer membranes
    Wang, Chih-Ying
    Hill, Reghan J.
    JOURNAL OF FLUID MECHANICS, 2013, 723 : 352 - 373
  • [7] MECHANISM OF ACTION OF DNP ON PHOSPHOLIPID BILAYER MEMBRANES
    MCLAUGHLIN, S
    JOURNAL OF MEMBRANE BIOLOGY, 1972, 9 (04): : 361 - +
  • [8] Peptides@mica: from affinity to adhesion mechanism
    Gladytz, A.
    John, T.
    Gladytz, T.
    Hassert, R.
    Pagel, M.
    Risselada, H. J.
    Naumov, S.
    Beck-Sickinger, A. G.
    Abel, B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (34) : 23516 - 23527
  • [9] A hybrid SAM phospholipid approach to fabricating a free supported lipid bilayer
    Hughes, AV
    Goldar, A
    Gerstenberg, MC
    Roser, SJ
    Bradshaw, J
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (11) : 2371 - 2378
  • [10] Materials science of the gel to fluid phase transition in a supported phospholipid bilayer
    Xie, AF
    Yamada, R
    Gewirth, AA
    Granick, S
    PHYSICAL REVIEW LETTERS, 2002, 89 (24) : 246103 - 246103