Global existence and nonexistence for nonlinear wave equations with damping and source terms

被引:79
作者
Rammaha, MA [1 ]
Strei, TA [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
wave equations; weak solutions; blow-up;
D O I
10.1090/S0002-9947-02-03034-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial-boundary value problem for a nonlinear wave equation in one space dimension. The nonlinearity features the damping term \u\(m-1) u(t) and a source term of the form \u\(p-1) u, with m, p > 1. We show that whenever m greater than or equal to p, then local weak solutions are global. On the other hand, we prove that whenever p > m and the initial energy is negative, then local weak solutions cannot be global, regardless of the size of the initial data.
引用
收藏
页码:3621 / 3637
页数:17
相关论文
共 27 条
[21]  
LIONS JL, 1972, NONHOMOGENEOUS BOUND, V2
[22]  
PAYNE LE, 1981, ISRAEL MATH J, V22, P273
[23]   INTERPOLATION IN LP WITH BOUNDARY-CONDITIONS [J].
SEELEY, R .
STUDIA MATHEMATICA, 1972, 44 (01) :47-&
[24]   NON-LINEAR SEMI-GROUPS [J].
SEGAL, I .
ANNALS OF MATHEMATICS, 1963, 78 (02) :339-&
[25]  
TEMAM R, 1984, NAVIERSTOKES EQUATIO
[26]  
Tsutsumi H., 1972, MATH JPN, V17, P173
[27]   EXISTENCE AND ASYMPTOTIC-BEHAVIOR FOR A STRONGLY DAMPED NON-LINEAR WAVE-EQUATION [J].
WEBB, GF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03) :631-643