Global existence and nonexistence for nonlinear wave equations with damping and source terms

被引:79
作者
Rammaha, MA [1 ]
Strei, TA [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
wave equations; weak solutions; blow-up;
D O I
10.1090/S0002-9947-02-03034-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial-boundary value problem for a nonlinear wave equation in one space dimension. The nonlinearity features the damping term \u\(m-1) u(t) and a source term of the form \u\(p-1) u, with m, p > 1. We show that whenever m greater than or equal to p, then local weak solutions are global. On the other hand, we prove that whenever p > m and the initial energy is negative, then local weak solutions cannot be global, regardless of the size of the initial data.
引用
收藏
页码:3621 / 3637
页数:17
相关论文
共 27 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
Agre K., 2001, DIFFERENTIAL INTEGRA, V14, P1315, DOI DOI 10.1016/J.JDE.2004.04.011
[3]   MIXED PROBLEM FOR SOME SEMI-LINEAR WAVE-EQUATION WITH A NONHOMOGENEOUS CONDITION [J].
ANG, DD ;
DINH, APN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (06) :581-592
[5]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[6]   BLOW-UP THEOREMS FOR NONLINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) :183-203
[7]  
GREENBERG JM, 1968, J MATH MECH, V17, P707
[8]   CARACTERISATION DE QUELQUES ESPACES DINTERPOLATION [J].
GRISVARD, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :40-&
[9]  
Grisvard P., 1969, ANN SCI ECOLE NORM S, V2, P311, DOI DOI 10.24033/ASENS.1178
[10]  
Jorgens K., 1961, Math. Z, V77, P295, DOI DOI 10.1007/BF01180181