Microscale two-dimensional (2D) temperature mapping by ratiometric fluorescence imaging under orthogonal excitations

被引:4
作者
Chen, Chen
Shen, Tong
Du, Zhidong
Zhang, Junxue
Wang, Jicheng
Marconnet, Amy
Pan, Liang [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Temperature mapping; Ratiometric thermometry; Fluorescence imaging; Fluorescence anisotropy; THERMOMETRY; ANISOTROPY; DEVICES;
D O I
10.1016/j.expthermflusci.2018.02.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
Microscale temperature mapping in liquids is of great importance in many areas of research such as microfluidics and biology. Among the current thermometric approaches, optical probing using fluorescence is particularly desirable because of its high spatial resolution and non-invasive nature. Here we report a new microscale two-dimensional (2D) fluorescence thermometry. This method exploits the temperature dependence of rotational molecular motion and its influence on the depolarization of fluorescence light, by measuring the difference in fluorescence intensities excited by orthogonal polarizations. With one charge coupled device (CCD) camera, we get 2D ratiometric mappings of temperature from successively recorded fluorescence images under alternatively polarized excitations. We demonstrate reliable temperature mapping in liquids at sub-1 degrees C temperature accuracy and sub-10 mu m spatial resolution. We also show that the proposed thermometry approach is robust against fluorescence intensity variations, suitable for 2D mapping and of fast readout that is comparable to CCD framerate. Moreover, it is easy to be integrated into microscope systems since only rotation of excitation polarization is needed.
引用
收藏
页码:168 / 171
页数:4
相关论文
共 30 条
[1]   Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye [J].
Arata, Hideyuki F. ;
Low, Peter ;
Ishizuka, Koji ;
Bergaud, Christian ;
Kim, Beomjoon ;
Noji, Hiroyuki ;
Fujita, Hiroyuki .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) :339-345
[2]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[3]   Mapping Heat Origin in Plasmonic Structures [J].
Baffou, Guillaume ;
Girard, Christian ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Fluorescence Lifetime Measurements and Biological Imaging [J].
Berezin, Mikhail Y. ;
Achilefu, Samuel .
CHEMICAL REVIEWS, 2010, 110 (05) :2641-2684
[5]   Temperature mapping using molecular diffusion based fluorescence thermometry via simultaneous imaging of two numerical apertures [J].
Chen, Chen ;
Du, Zhidong ;
Wang, Jicheng ;
Pan, Liang .
OPTICS EXPRESS, 2016, 24 (23) :26599-26611
[6]   Formula for the viscosity of a glycerol-water mixture [J].
Cheng, Nian-Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (09) :3285-3288
[7]   Mapping Intracellular Temperature Using Green Fluorescent Protein [J].
Donner, Jon S. ;
Thompson, Sebastian A. ;
Kreuzer, Mark P. ;
Baffou, Guillaume ;
Quidant, Romain .
NANO LETTERS, 2012, 12 (04) :2107-2111
[8]   CCD-based thermoreflectance microscopy: principles and applications [J].
Farzaneh, M. ;
Maize, K. ;
Luerssen, D. ;
Summers, J. A. ;
Mayer, P. M. ;
Raad, P. E. ;
Pipe, K. P. ;
Shakouri, A. ;
Ram, R. J. ;
Hudgings, Janice A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
[9]   THERMAL-CONDUCTIVITY OF LIQUID-MIXTURES [J].
GAITONDE, UN ;
DESHPANDE, DD ;
SUKHATME, SP .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1978, 17 (04) :321-325
[10]   Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry [J].
Gao, Liang ;
Zhang, Chi ;
Li, Chiye ;
Wang, Lihong V. .
APPLIED PHYSICS LETTERS, 2013, 102 (19)