共 50 条
Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway
被引:27
|作者:
Park, EK
Warner, N
Mood, K
Pawson, T
Daar, IO
机构:
[1] NCI, Regulat Cell Growth Lab, Frederick, MD 21702 USA
[2] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Program Mol Biol & Canc, Toronto, ON M5G 1X5, Canada
关键词:
D O I:
10.1128/MCB.22.10.3404-3414.2002
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) signaling pathway during Xenopus development. XLPTP1 has an expression pattern that displays substantial overlap with FGF receptor 1 (FGFR1) during Xenopus development. Using morpholino antisense technology, we show that inhibition of endogenous XLPTP1 expression dramatically restricts anterior and posterior structure development and inhibits mesoderm formation. In ectodermal explants, loss of XLPTP1 expression dramatically blocks the induction of the early mesoderm gene, Xbrachyury (Xbra), by FGF and partially blocks Xbra induction by Activin. Moreover, FGF-induced activation of mitogen-activated protein (MAP) kinase is also inhibited by XLPTP1 morpholino antisense oligonucleotides; however, introduction of RNA encoding XLPTP1 is able to rescue morphological and biochemical effects of antisense inhibition. Inhibition of FGF-induced MAP kinase activity due to loss of XLPTP1 is also rescued by an active Ras, implying that XLPTP1 may act upstream of or parallel to Ras. Finally, XLPTP1 physically associates only with an activated FGFR1, and this interaction requires the presence of SNT1/FRS-2 (FGFR substrate 2). Although LMW-PTP1 has been shown to participate in other receptor systems, the data presented here also reveal XLPTP1 as a new and important component of the FGF signaling pathway.
引用
收藏
页码:3404 / 3414
页数:11
相关论文