Floe Size Effect on Wave-Ice Interactions: Possible Effects, Implementation in Wave Model, and Evaluation

被引:45
作者
Boutin, Guillaume [1 ]
Ardhuin, Fabrice [1 ]
Dumont, Dany [2 ]
Sevigny, Caroline [2 ]
Girard-Ardhuin, Fanny [1 ]
Accensi, Mickael [1 ]
机构
[1] Univ Brest, CNRS, IUEM, LOPS,Ifremer,IRD, Brest, France
[2] Univ Quebec Rimouski, Inst Sci Mer, Rimouski, PQ, Canada
基金
欧盟第七框架计划;
关键词
IN-SITU MEASUREMENTS; SEA-ICE; OCEAN WAVES; GRAVITY-WAVES; COVERED SEAS; SALINE ICE; ZONE; ATTENUATION; SURFACE; DISSIPATION;
D O I
10.1029/2017JC013622
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Wind waves may play an important role in the evolution of sea ice. That role is largely determined by how fast the ice layer dissipates the wave energy. The transition from a continuous layer of ice to a series of broken floes is expected to have a strong impact on the several attenuation processes. Here we explore the possible effects of basal friction, scattering, and dissipation within the ice layer. The ice is treated as a single layer that can be fractured in many floes. Dissipation associated with ice flexure is evaluated using an anelastic linear dissipation and a cubic inelastic viscous dissipation. Tests aiming to reproduce a Marginal Ice Zone are used to discuss the effects of each process separately. Attenuation is exponential for friction and scattering. Scattering produces an increase in the wave height near the ice edge and broadens the wave directional spectrum, especially for short-period waves. The nonlinear inelastic dissipation is larger for larger wave heights as long as the ice is not broken. These effects are combined in a realistic simulation of an ice break-up event observed south of Svalbard in 2010. The recorded rapid shift from a strong attenuation to little attenuation when the ice is broken is only reproduced when using a nonlinear dissipation that vanishes when the ice is broken. A preliminary pan-Arctic test of these different parameterizations suggests that inelastic dissipation alone is not enough and requires its combination with basal friction.
引用
收藏
页码:4779 / 4805
页数:27
相关论文
共 67 条
[1]  
[Anonymous], 2012, OCEAN SCI, DOI DOI 10.5194/os-8-633-2012
[2]  
[Anonymous], 1986, GEOPHYS SEA ICE
[3]   Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data [J].
Ardhuin, Fabrice ;
Stopa, Justin ;
Chapron, Bertrand ;
Collard, Fabrice ;
Smith, Madison ;
Thomson, Jim ;
Doble, Martin ;
Blomquist, Byron ;
Persson, Ola ;
Collins, Clarence O., III ;
Wadhams, Peter .
REMOTE SENSING OF ENVIRONMENT, 2017, 189 :211-222
[4]   Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19s [J].
Ardhuin, Fabrice ;
Sutherland, Peter ;
Doble, Martin ;
Wadhams, Peter .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (11) :5775-5783
[5]   Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation [J].
Ardhuin, Fabrice ;
Rogers, Erick ;
Babanin, Alexander V. ;
Filipot, Jean-Francois ;
Magne, Rudy ;
Roland, Aaron ;
van der Westhuysen, Andre ;
Queffeulou, Pierre ;
Lefevre, Jean-Michel ;
Aouf, Lotfi ;
Collard, Fabrice .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (09) :1917-1941
[6]   Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms [J].
Asplin, Matthew G. ;
Galley, Ryan ;
Barber, David G. ;
Prinsenberg, Simon .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
[7]  
Banner ML, 2000, J PHYS OCEANOGR, V30, P3145, DOI 10.1175/1520-0485(2000)030<3145:BPFDWO>2.0.CO
[8]  
2
[9]   An idealised experimental model of ocean surface wave transmission by an ice floe [J].
Bennetts, L. G. ;
Alberello, A. ;
Meylan, M. H. ;
Cavaliere, C. ;
Babanin, A. V. ;
Toffoli, A. .
OCEAN MODELLING, 2015, 96 :85-92
[10]  
Bennetts L. G., 2012, P ROY SOC LOND A MAT, V468, P132