Ergodicity of the adic transformation on the Euler graph

被引:13
作者
Bailey, Sarah
Keane, Michael
Petersen, Karl
Salama, Ibrahim A.
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Wesleyan Univ, Dept Math, Middletown, CT 06459 USA
[3] N Carolina Cent Univ, Sch Business, Durham, NC 27707 USA
关键词
D O I
10.1017/S0305004106009431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euler graph has vertices labelled (n, k) for n = 0, 1, 2.... and k = 0, t.... n, with k + 1 edges from (n, k) to (n + 1, k) and n - k + 1, edges frorn (n, k) to (n + 1, k + 1). The number of'paths froin (0,0) to (n, k) is the Euleriall Dumber A(n, k), the number of perinutations oft, 2,..., n+ I with exactly n-k falls and k rises. lVe prove that the adic (Bratteli-ITershik) transformation on the space of infinite paths in this graph is ergodic with respect to the syrnmetric measure.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 10 条
[1]  
Bailey Frick S, THESIS U N CAROLINA
[2]  
BAILEY S, RANDOM PERMUTATIONS
[3]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[4]   INVARIANT MEASURES AND ORBITS OF DISSIPATIVE TRANSFORMATIONS [J].
HAJIAN, A ;
KAKUTANI, S ;
ITO, Y .
ADVANCES IN MATHEMATICS, 1972, 9 (01) :52-&
[5]  
Keane M, 2003, PRINC SER APPL MATH, P329
[6]   Dynamical properties of the Pascal adic transformation [J].
Méla, X ;
Petersen, K .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :227-256
[7]  
MELA X, IN PRESS ANN I H POI
[8]  
Petersen K, 2002, NONL PHEN COMPL SYST, V7, P147
[9]   The asymptotic normality of a rank correlation statistic based on rises [J].
Salama, IA ;
Quade, D .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) :201-205
[10]  
Vershik A., 1987, J. Sov. Math., V38, P1701, DOI 10.1007/BF01088200