Progress in the Field of Electrospinning for Tissue Engineering Applications

被引:409
作者
Agarwal, Seema [1 ]
Wendorff, Joachim H.
Greiner, Andreas
机构
[1] Univ Marburg, Dept Chem, D-35032 Marburg, Germany
关键词
NANOFIBROUS SCAFFOLDS; COMPOSITE FIBERS; REGENERATION; COLLAGEN; ENHANCE; POLYCAPROLACTONE; ANISOTROPY; MICROFIBER; MATRIX; MATS;
D O I
10.1002/adma.200803092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrospinning is an extremely promising method for the prevention of tissue engineering (TE) scaffolds. This technique provides nonwovens resembling in their fibrillar structures those of the extracellular matrix (ECM), and offering large surface areas, ease of functionalization for various purposes, and controllable mechanical properties. The recent developments toward large-scale productions combined with the simplicity of the process render this technique very attractive. Progress concerning the use of electrospinning for TE applications has advanced impressively. Different groups have tackled the problem of electrospinning for TE applications from different angles. Nowadays, electrospinning of the majority of biodegradable and biocompatible polymers, either synthetic or natural, for TE applications is straightforward. Different issues, such as cell penetration, incorporation of growth and differentiating factors, toxicity or solvents used, productivity, functional gradient, etc. are main points of current considerations. The progress in the use of electrospinning of TE applications is highlighted in this article with focus on major problems encountered and on various solutions available until now.
引用
收藏
页码:3343 / 3351
页数:9
相关论文
共 71 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]   Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering [J].
Ashammakhi, N. ;
Ndreu, A. ;
Piras, A. M. ;
Nikkola, L. ;
Sindelar, T. ;
Ylikauppila, H. ;
Harlin, A. ;
Gomes, M. E. ;
Neves, N. M. ;
Chiellini, E. ;
Chiellini, F. ;
Hasirci, V. ;
Redl, H. ;
Reis, R. L. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) :862-882
[3]   Advancing tissue engineering by using electrospun nanofibers [J].
Ashammakhi, Nureddin ;
Ndreu, A. ;
Nikkola, L. ;
Wimpenny, I. ;
Yang, Y. .
REGENERATIVE MEDICINE, 2008, 3 (04) :547-574
[4]   Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds [J].
Ayres, Chantal E. ;
Bowlin, Gary L. ;
Pizinger, Ryan ;
Taylor, Leander T. ;
Keen, Christopher A. ;
Simpson, David G. .
ACTA BIOMATERIALIA, 2007, 3 (05) :651-661
[5]   Poly(ε-caprolactone) grafted dextran biodegradable electrospun matrix:: A novel scaffold for tissue engineering [J].
Bajgai, Madhab Prasad ;
Aryal, Santosh ;
Bhattarai, Shanta Raj ;
Bahadur, K. C. Remant ;
Kim, Kawn-Woo ;
Kim, Hak Yong .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (03) :1447-1454
[6]   SYNTHETIC LIPIDATION OF PEPTIDES AND AMINO-ACIDS - MONOLAYER STRUCTURE AND PROPERTIES [J].
BERNDT, P ;
FIELDS, GB ;
TIRRELL, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (37) :9515-9522
[7]   Electrospinning approaches toward scaffold engineering - A brief overview [J].
Boudriot, Ulrich ;
Dersch, Roland ;
Greiner, Andreas ;
Wendorff, Joachim H. .
ARTIFICIAL ORGANS, 2006, 30 (10) :785-792
[8]   Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding [J].
Casper, Cheryl L. ;
Yang, Weidong ;
Farach-Carson, Mary C. ;
Rabolt, John F. .
BIOMACROMOLECULES, 2007, 8 (04) :1116-1123
[9]   Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method [J].
Chen Chen ;
Cao Chuanbao ;
Ma Xilan ;
Tang Yin ;
Zhu Hesun .
POLYMER, 2006, 47 (18) :6322-6327
[10]   The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development [J].
Chen, Yei-Tsung ;
Collins, Loretta L. ;
Chang, Shu-Shi ;
Chang, Chawnshang .
CEREBELLUM, 2008, 7 (01) :9-17