Consensus Inference with Multilayer Graphs for Multi-modal Data

被引:0
作者
Ramamurthy, Karthikeyan Natesan [1 ]
Thiagarajan, Jayaraman J. [2 ]
Sridhar, Rahul [3 ]
Kothandaraman, Premnishanth
Nachiappan, Ramanathan
机构
[1] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] SSN Coll Engn, Madras, Tamil Nadu, India
来源
CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS | 2014年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emergence of numerous modalities for data generation necessitates the development of machine learning techniques that can perform efficient inference with multi-modal data. In this paper, we present an approach to learn discriminant low-dimensional projections from supervised multi-modal data. We construct intra-and inter-class similarity graphs for each modality and optimize for consensus projections in the kernel space. Features obtained with these projections can then be used to train a classifier for consensus inference. We also provide methods for out-of-sample extensions with novel test data. Classification results with standard multi-modal data sets demonstrate the efficacy of our method.
引用
收藏
页码:1341 / 1345
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2011, INT C MACHINE LEARNI
[2]  
[Anonymous], P INT C MACH LEARN
[3]  
[Anonymous], 2008, P 25 INT C MACH LEAR, DOI DOI 10.1145/1390156.1390279
[4]  
[Anonymous], 2014, ARXIV14070900
[5]  
Axenopoulos A., 2011, P 16 INT C 3D WEB TE
[6]  
Chen HT, 2005, PROC CVPR IEEE, P846
[7]   Clustering on Multi-Layer Graphs via Subspace Analysis on Grassmann Manifolds [J].
Dong, Xiaowen ;
Frossard, Pascal ;
Vandergheynst, Pierre ;
Nefedov, Nikolai .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) :905-918
[8]   Canonical correlation analysis: An overview with application to learning methods [J].
Hardoon, DR ;
Szedmak, S ;
Shawe-Taylor, J .
NEURAL COMPUTATION, 2004, 16 (12) :2639-2664
[9]   Trace Ratio Problem Revisited [J].
Jia, Yangqing ;
Nie, Feiping ;
Zhang, Changshui .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (04) :729-735
[10]  
Liu F., 2013, ARXIV13100890