Inverse Design of Photonic Devices with Strict Foundry Fabrication Constraints

被引:27
作者
Schubert, Martin F. [1 ]
Cheung, Alfred K. C. [1 ]
Williamson, Ian A. D. [1 ]
Spyra, Aleksandra [1 ]
Alexander, David H. [2 ]
机构
[1] X Dev LLC, Mountain View, CA 94043 USA
[2] Google, Mountain View, CA 94043 USA
关键词
optimization; design rule; topology; beamsplitter; demultiplexer; mode converter; MINIMUM LENGTH SCALE; TOPOLOGY OPTIMIZATION;
D O I
10.1021/acsphotonics.2c00313
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce a new method for the inverse design of nanophotonic devices that guarantees that the resulting designs satisfy strict length scale constraints, including minimum width and spacing constraints required by commercial semiconductor foundries. The method adopts several concepts from machine learning to transform the problem of topology optimization with strict length scale constraints to an unconstrained stochastic gradient optimization problem. Specifically, we introduce a conditional generator for feasible designs and adopt a straight-through estimator for the backpropagation of gradients to a latent design. We demonstrate the performance and reliability of our method by designing several common integrated photonic components.
引用
收藏
页码:2327 / 2336
页数:10
相关论文
共 39 条
  • [1] [Anonymous], CEVICHE CHALLENGES P
  • [2] Quantum circuits with many photons on a programmable nanophotonic chip
    Arrazola, J. M.
    Bergholm, V
    Bradler, K.
    Bromley, T. R.
    Collins, M. J.
    Dhand, I
    Fumagalli, A.
    Gerrits, T.
    Goussev, A.
    Helt, L. G.
    Hundal, J.
    Isacsson, T.
    Israel, R. B.
    Izaac, J.
    Jahangiri, S.
    Janik, R.
    Killoran, N.
    Kumar, S. P.
    Lavoie, J.
    Lita, A. E.
    Mahler, D. H.
    Menotti, M.
    Morrison, B.
    Nam, S. W.
    Neuhaus, L.
    Qi, H. Y.
    Quesada, N.
    Repingon, A.
    Sabapathy, K. K.
    Schuld, M.
    Su, D.
    Swinarton, J.
    Szava, A.
    Tan, K.
    Tan, P.
    Vaidya, V. D.
    Vernon, Z.
    Zabaneh, Z.
    Zhang, Y.
    [J]. NATURE, 2021, 591 (7848) : 54 - +
  • [3] Bengio Y., ARXIV13083432 CSLG 2
  • [4] Calibre Verification User's Manual, 2021, MENTOR GRAPHICS
  • [5] Geometry projection method for optimizing photonic nanostructures
    Frei, W. R.
    Tortorelli, D. A.
    Johnson, H. T.
    [J]. OPTICS LETTERS, 2007, 32 (01) : 77 - 79
  • [6] On minimum length scale control in density based topology optimization
    Hagg, Linus
    Wadbro, Eddie
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (03) : 1015 - 1032
  • [7] Photonic topology optimization with semiconductor-foundry design-rule constraints
    Hammond, Alec M.
    Oskooi, Ardavan
    Johnson, Steven G.
    Ralph, Stephen E.
    [J]. OPTICS EXPRESS, 2021, 29 (15) : 23916 - 23938
  • [8] Hubara I, 2018, J MACH LEARN RES, V18
  • [9] A perspective on the pathway toward full wave simulation of large area metalenses
    Hughes, Tyler W.
    Minkov, Momchil
    Liu, Victor
    Yu, Zongfu
    Fan, Shanhui
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (15)
  • [10] Forward-Mode Differentiation of Maxwell's Equations
    Hughes, Tyler W.
    Williamson, Ian A. D.
    Minkov, Momchil
    Fan, Shanhui
    [J]. ACS PHOTONICS, 2019, 6 (11): : 3010 - 3016