Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles

被引:512
|
作者
Zou, Yuan [1 ]
Hu, Xiaosong [2 ]
Ma, Hongmin [1 ]
Li, Shengbo Eben [3 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Univ Calif Berkeley, Energy Controls & Applicat Lab, Berkeley, CA 94720 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric vehicles; Lithium-ion battery; Kalman filter; Recursive least squares; State of charge; State of health; OF-CHARGE; MANAGEMENT-SYSTEMS; CAPACITY FADE; PART; MODEL; PACKS; PARAMETER;
D O I
10.1016/j.jpowsour.2014.09.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combined SOC (State Of Charge) and SOH (State Of Health) estimation method over the lifespan of a lithium-ion battery is proposed. First, the SOC dependency of the nominal parameters of a first-order RC (resistor-capacitor) model is determined, and the performance degradation of the nominal model over the battery lifetime is quantified. Second, two Extended Kalman Filters with different time scales are used for combined SOC/SOH monitoring: the SOC is estimated in real-time, and the SOH (the capacity and internal ohmic resistance) is updated offline. The time scale of the SOH estimator is determined based on model accuracy deterioration. The SOC and SOH estimation results are demonstrated by using large amounts of testing data over the battery lifetime. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:793 / 803
页数:11
相关论文
共 50 条
  • [1] A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles
    Zhang, Tao
    Guo, Ningyuan
    Sun, Xiaoxia
    Fan, Jie
    Yang, Naifeng
    Song, Junjie
    Zou, Yuan
    SUSTAINABILITY, 2021, 13 (09)
  • [2] A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles
    Chen, Zheng
    Li, Xiaoyu
    Shen, Jiangwei
    Yan, Wensheng
    Xiao, Renxin
    ENERGIES, 2016, 9 (09)
  • [3] An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles
    Du, Jiani
    Liu, Zhitao
    Wang, Youyi
    Wen, Changyun
    CONTROL ENGINEERING PRACTICE, 2016, 54 : 81 - 90
  • [4] The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    Feng, Xuning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) : 92 - 103
  • [5] State of Charge, State of Health and State of Function Co-estimation of Lithium-ion Batteries for Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [6] Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles
    Hua, Yin
    Xu, Min
    Li, Mian
    Ma, Chengbin
    Zhao, Chen
    ENERGIES, 2015, 8 (05): : 3556 - 3577
  • [7] Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    Sun, Fengchun
    Hu, Xiaosong
    Zou, Yuan
    Li, Siguang
    ENERGY, 2011, 36 (05) : 3531 - 3540
  • [8] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [9] State of charge and state of health estimation of a lithium-ion battery for electric vehicles: A review
    Belmajdoub, N.
    Lajouad, R.
    El Magri, A.
    Boudoudouh, S.
    IFAC PAPERSONLINE, 2024, 58 (13): : 460 - 465
  • [10] A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    ENERGY REPORTS, 2021, 7 : 5141 - 5161