Best Constants in Weighted Estimates for Dyadic Shifts

被引:1
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Dyadic; Shift; Weight; Bellman function; Best constant; Primary; 42B35; Secondary; 46E30; NORM INEQUALITIES; BELLMAN FUNCTIONS; OPERATORS; BOUNDS;
D O I
10.1007/s00020-020-02614-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the weighted Lp-norms of shift operators in the context of nonatomic probability spaces equipped with tree-like structures.
引用
收藏
页数:18
相关论文
共 13 条
[1]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[2]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[3]  
GUNDY RF, 1974, STUD MATH, V49, P107
[4]   SHARP WEIGHTED BOUNDS INVOLVING A∞ [J].
Hytoenen, Tuomas ;
Perez, Carlos .
ANALYSIS & PDE, 2013, 6 (04) :777-818
[5]   AN ELEMENTARY PROOF OF THE A2 BOUND [J].
Lacey, Michael T. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 217 (01) :181-195
[6]   ON AN ESTIMATE OF CALDERON-ZYGMUND OPERATORS BY DYADIC POSITIVE OPERATORS [J].
Lerner, Andrei K. .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 :141-161
[7]   Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals [J].
Lerner, Andrei K. .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :3912-3926
[8]   The Bellman functions of dyadic-like maximal operators and related inequalities [J].
Melas, AD .
ADVANCES IN MATHEMATICS, 2005, 192 (02) :310-340
[9]   Sharp weighted bounds without testing or extrapolation [J].
Moen, Kabe .
ARCHIV DER MATHEMATIK, 2012, 99 (05) :457-466
[10]   WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :261-274