Long time existence for two-dimension elastic waves

被引:2
作者
Peng, Weimin [1 ]
Zha, Dongbing [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear elastic waves; Lifespan; GLOBAL EXISTENCE; LIFE-SPAN; CLASSICAL-SOLUTIONS; HYPERBOLIC SYSTEMS; NULL CONDITION; EQUATIONS; REGULARITY; AMPLITUDE;
D O I
10.1016/j.jde.2022.02.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for the Cauchy problem of nonlinear elastic wave equations for two-dimension isotropic, homogeneous and hyperelastic materials with small initial data, we give the lifespan estimates for classical solutions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 413
页数:30
相关论文
共 43 条
[1]   Global existence of nonlinear elastic waves [J].
Agemi, R .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :225-250
[2]  
Agemi R., 1998, SERIES ADV MATH APPL, V48, P43
[3]  
Agemi R., 2005, Hokkaido Univ. Technical Report Ser. in Math., V96, P33
[4]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[5]  
CHORIN AJ, 1993, MATH INTRO FLUID MEC, V4
[6]  
Ciarlet P.G., 1988, MATH ELASTICITY, V1
[7]   LIFE-SPAN OF SOLUTIONS OF SEMILINEAR WAVE-EQUATIONS IN 2 SPACE DIMENSIONS [J].
GODIN, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :895-916
[8]  
Gurtin M.E., 1981, CBMS-NSF Regional Conference Series in Applied Mathematics, V35
[9]  
Hidano K., 2013, ARXIV PREPRINT ARXIV
[10]  
Hidano K, 2017, 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu, P37