Dispersion Limits of the Small Mode Area Photonic Crystal Fibers Designed as a Broadband Compensator

被引:0
作者
Zeleny, R. [1 ]
Lucki, M. [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Telecommun Engn, CR-16635 Prague 6, Czech Republic
来源
MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES III | 2014年 / 9128卷
关键词
photonic crystal fiber; small mode area; fiber dispersion; fiber properties; OPTICAL FIBERS; CORE;
D O I
10.1117/12.2051934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonlinear photonic crystal fibers with small effective mode area allow to control chromatic dispersion in the near-infrared region. In this paper the chromatic dispersion is controlled entirely by structural parameters and the influence of each structural parameter is examined and described in detail. Understanding of the influence not only permits fiber design and dispersion tailoring, but also predicts the potential manufacturing tolerances. As a consequence, the fiber structural parameters are modified to found the balance between the operating bandwidth and the high negative dispersion parameter. We found that the limit value for the dispersion parameter is of about -1600 ps.nm(-1).km(-1) at 1550 nm whereas the desired dispersion slope is achieved over the 120 nm wide band. We predict that the negative dispersion parameter cannot be higher in the small effective mode area photonic crystal fibers operating over the bandwidth larger than the one considered in our paper. The results are calculated by the full-vectorial finite difference frequency domain method.
引用
收藏
页数:8
相关论文
共 13 条
[1]   Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems [J].
Begum, Feroza ;
Namihira, Yoshinori ;
Razzak, S. M. Abdur ;
Kaijage, Shubi ;
Hai, Nguyen Hoang ;
Kinjo, Tatsuya ;
Miyagi, Kazuya ;
Zou, Nianyu .
OPTICS AND LASER TECHNOLOGY, 2009, 41 (06) :679-686
[2]   Dispersion-compensating fibers [J].
Grüner-Nielsen, L ;
Wandel, M ;
Kristensen, P ;
Jorgensen, C ;
Jorgensen, LV ;
Edvold, B ;
Pálsdóttir, B ;
Jakobsen, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (11) :3566-3579
[3]   Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode [J].
Huttunen, A ;
Törmä, P .
OPTICS EXPRESS, 2005, 13 (02) :627-635
[4]   Design of a Polarization-Maintaining Equiangular Spiral Photonic Crystal Fiber for Residual Dispersion Compensation Over E plus S plus C plus L plus U Wavelength Bands [J].
Islam, Md Asiful ;
Alam, M. Shah .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (11) :930-932
[5]  
Latal J., 2012, P SOC PHOTO-OPT INS, V8697
[6]   A novel highly negative dispersion photonic crystal fiber [J].
Li H.-L. ;
Lou S.-Q. ;
Guo T.-Y. ;
Chen W.-Q. ;
Wang L. ;
Jian S.-S. .
Optoelectronics Letters, 2009, 5 (01) :34-36
[7]  
Lucki M., 2013, P SOC PHOTO-OPT INS, V8775
[8]   Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers [J].
Poletti, F ;
Finazzi, V ;
Monro, TM ;
Broderick, NGR ;
Tse, V ;
Richardson, DJ .
OPTICS EXPRESS, 2005, 13 (10) :3728-3736
[9]  
Rodriguez-Esquerre V. F., 2009, MICR OPT C IMOC 2009, P557
[10]   Design of a broadband highly dispersive pure silica photonic crystal fiber [J].
Subbaraman, Harish ;
Ling, Tao ;
Jiang, YongQiang ;
Chen, Maggie Y. ;
Cao, Peiyan ;
Chen, Ray T. .
APPLIED OPTICS, 2007, 46 (16) :3263-3268