GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust

被引:130
作者
Besserer, Jonathan [1 ]
Nimmo, Francis [1 ]
Wieczorek, Mark A. [2 ]
Weber, Renee C. [3 ]
Kiefer, Walter S. [4 ]
McGovern, Patrick J. [4 ]
Andrews-Hanna, Jeffrey C. [5 ,6 ]
Smith, David E. [7 ]
Zuber, Maria T. [7 ]
机构
[1] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[2] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Paris, France
[3] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[4] Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA
[5] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA
[6] Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
关键词
Moon; Lunar crust; Density; Porosity; Admittance; Gravity; SPECTRAL ESTIMATION; INTERNAL STRUCTURE; HEAT-FLOW; MOON; INTERIOR; FIELD; MODEL;
D O I
10.1002/2014GL060240
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We analyzed data from the Gravity Recovery and Interior Laboratory (GRAIL) mission using a localized admittance approach to map out spatial variations in the vertical density structure of the lunar crust. Mare regions are characterized by a distinct decrease in density with depth, while the farside is characterized by an increase in density with depth at an average gradient of approximate to 35kgm(-3)km(-1) and typical surface porosities of at least 20%. The Apollo 12 and 14 landing site region has a similar density structure to the farside, permitting a comparison with seismic velocity profiles. The interior of the South Pole-Aitken (SP-A) impact basin appears distinct with a near-surface low-density (porous) layer 2-3 times thinner than the rest of the farside. This result suggests that redistribution of material during the large SP-A impact likely played a major role in sculpting the lunar crust.
引用
收藏
页码:5771 / 5777
页数:7
相关论文
共 50 条
[1]   Criteria for the detection of lunar cryptomaria [J].
Antonenko, I ;
Head, JW ;
Mustard, JF ;
Hawke, BR .
EARTH MOON AND PLANETS, 1995, 69 (02) :141-172
[2]  
Besserer J., 2013, Proc. Lunar Planet. Sci. Conf, V44, P2463
[3]  
Christensen R. M., 1979, Mechanics of composite materials
[4]   LUNAR NEAR-SURFACE STRUCTURE [J].
COOPER, MR ;
KOVACH, RL ;
WATKINS, JS .
REVIEWS OF GEOPHYSICS, 1974, 12 (03) :291-308
[5]   Spectral estimation on a sphere in geophysics and cosmology [J].
Dahlen, F. A. ;
Simons, Frederik J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 174 (03) :774-807
[6]   Elliptical structure of the lunar South Pole-Aitken basin [J].
Garrick-Bethell, Ian ;
Zuber, Maria T. .
ICARUS, 2009, 204 (02) :399-408
[7]   Lunar gravity field determination using SELENE same-beam differential VLBI tracking data [J].
Goossens, S. ;
Matsumoto, K. ;
Liu, Q. ;
Kikuchi, F. ;
Sato, K. ;
Hanada, H. ;
Ishihara, Y. ;
Noda, H. ;
Kawano, N. ;
Namiki, N. ;
Iwata, T. ;
Lemoine, F. G. ;
Rowlands, D. D. ;
Harada, Y. ;
Chen, M. .
JOURNAL OF GEODESY, 2011, 85 (04) :205-228
[8]   Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data [J].
Han, Shin-Chan ;
Schmerr, Nicholas ;
Neumann, Gregory ;
Holmes, Simon .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (06) :1882-1889
[9]   Determination and localized analysis of intersatellite line of sight gravity difference: Results from the GRAIL primary mission [J].
Han, Shin-Chan .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (11) :2323-2337
[10]   Density and porosity of the lunar crust from gravity and topography [J].
Huang, Qian ;
Wieczorek, Mark A. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2012, 117