Inference on Treatment Effects after Selection among High-Dimensional ControlsaEuro
被引:706
|
作者:
Belloni, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Durham, NC 27706 USADuke Univ, Durham, NC 27706 USA
Belloni, Alexandre
[1
]
Chernozhukov, Victor
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Cambridge, MA 02139 USADuke Univ, Durham, NC 27706 USA
Chernozhukov, Victor
[2
]
Hansen, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Chicago, IL 60637 USADuke Univ, Durham, NC 27706 USA
Hansen, Christian
[3
]
机构:
[1] Duke Univ, Durham, NC 27706 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Chicago, Chicago, IL 60637 USA
来源:
REVIEW OF ECONOMIC STUDIES
|
2014年
/
81卷
/
02期
基金:
美国国家科学基金会;
关键词:
Treatment effects;
Partially linear model;
High-dimensional-sparse regression;
Inference under imperfect model selection;
Uniformly valid inference after model selection;
Average treatment effects;
Lasso;
Orthogonality of estimating equations with respect to nuisance parameters;
EFFICIENT SEMIPARAMETRIC ESTIMATION;
LEGALIZED ABORTION;
MODEL-SELECTION;
VARIABLE SELECTION;
REGRESSION;
ESTIMATORS;
MOMENT;
IMPACT;
LASSO;
CRIME;
D O I:
10.1093/restud/rdt044
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
We propose robust methods for inference about the effect of a treatment variable on a scalar outcome in the presence of very many regressors in a model with possibly non-Gaussian and heteroscedastic disturbances. We allow for the number of regressors to be larger than the sample size. To make informative inference feasible, we require the model to be approximately sparse; that is, we require that the effect of confounding factors can be controlled for up to a small approximation error by including a relatively small number of variables whose identities are unknown. The latter condition makes it possible to estimate the treatment effect by selecting approximately the right set of regressors. We develop a novel estimation and uniformly valid inference method for the treatment effect in this setting, called the "post-double-selection" method. The main attractive feature of our method is that it allows for imperfect selection of the controls and provides confidence intervals that are valid uniformly across a large class of models. In contrast, standard post-model selection estimators fail to provide uniform inference even in simple cases with a small, fixed number of controls. Thus, our method resolves the problem of uniform inference after model selection for a large, interesting class of models. We also present a generalization of our method to a fully heterogeneous model with a binary treatment variable. We illustrate the use of the developed methods with numerical simulations and an application that considers the effect of abortion on crime rates.
机构:
Tsinghua Berkeley Shenzhen Inst, DSIT Res Ctr, Shenzhen 518055, Peoples R ChinaTsinghua Berkeley Shenzhen Inst, DSIT Res Ctr, Shenzhen 518055, Peoples R China
Huang, Shao-Lun
Makur, Anuran
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept EECS & RLE, 77 Massachusetts Ave, Cambridge, MA 02139 USATsinghua Berkeley Shenzhen Inst, DSIT Res Ctr, Shenzhen 518055, Peoples R China
Makur, Anuran
Zheng, Lizhong
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept EECS & RLE, 77 Massachusetts Ave, Cambridge, MA 02139 USATsinghua Berkeley Shenzhen Inst, DSIT Res Ctr, Shenzhen 518055, Peoples R China
Zheng, Lizhong
Wornell, Gregory W.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept EECS & RLE, 77 Massachusetts Ave, Cambridge, MA 02139 USATsinghua Berkeley Shenzhen Inst, DSIT Res Ctr, Shenzhen 518055, Peoples R China
Wornell, Gregory W.
2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT),
2017,
: 1336
-
1340
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Wu, Peng
Tan, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USABeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Tan, Zhiqiang
Hu, Wenjie
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Dept Probabil & Stat, Beijing 100871, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Hu, Wenjie
Zhou, Xiao-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Dept Biostat, Beijing 100871, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
机构:
Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Harvard Univ, Sch Med, Boston, MA USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Rassen, Jeremy A.
Glynn, Robert J.
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Harvard Univ, Sch Med, Boston, MA USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Glynn, Robert J.
Brookhart, M. Alan
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Brookhart, M. Alan
Schneeweiss, Sebastian
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA
Harvard Univ, Sch Med, Boston, MA USABrigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Dept Med, Boston, MA 02120 USA