Seasonal Cycle of Isotope-Based Source Apportionment of Elemental Carbon in Airborne Particulate Matter and Snow at Alert, Canada

被引:7
作者
Rodriguez, B. T. [1 ]
Huang, L. [2 ]
Santos, G. M. [1 ]
Zhang, W. [2 ]
Vetro, V. [2 ]
Xu, X. [1 ]
Kim, S. [1 ]
Czimczik, C. I. [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
[2] Environm & Climate Change Canada, Div Climate Res, Atmospher Sci & Technol Directorate, Sci & Technol Branch, Toronto, ON, Canada
关键词
Arctic; carbonaceous aerosol; organic carbon; black carbon; radiocarbon; ECT9; BLACK CARBON; AEROSOL-PARTICLES; STABLE CARBON; ORGANIC-CARBON; SOURCE ATTRIBUTION; SYNOPTIC ACTIVITY; ARCTIC AEROSOL; FIRE EMISSIONS; AIR-POLLUTION; TRANSPORT;
D O I
10.1029/2020JD033125
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Elemental carbon (EC) is a major light-absorbing component of atmospheric aerosol particles. Here, we report the seasonal variation in EC concentrations and sources in airborne particulate matter (PM) and snow at Alert, Canada, from March 2014 to June 2015. We isolated the EC fraction with the EnCan-Total-900 (ECT9) protocol and quantified its stable carbon isotope composition (delta C-13) and radiocarbon content ( increment C-14) to apportion EC into contributions from fossil fuel combustion and biomass burning (wildfires and biofuel combustion). Ten-day backward trajectories show EC aerosols reaching Alert by traveling over the Arctic Ocean from the Russian Arctic during winter and from North America (>40 degrees N) during summer. EC concentrations range from 1.8-135.3 ng C m(-3) air (1.9-41.2% of total carbon [TC], n = 48), with lowest values in summer (1.8-44.5 ng C m(-3) air, n = 9). EC in PM (Delta C-14 = -532 +/- 114 parts per thousand [ave. +/- SD, n = 20]) and snow (-257 +/- 131 parts per thousand, n = 7) was depleted in C-14 relative to current ambient CO2 year-round. EC in PM mainly originated from liquid and solid fossil fuels from fall to spring (47-70% fossil), but had greater contributions from biomass burning in summer (48-80% modern carbon). EC in snow was mostly from biomass burning (53-88%). Our data show that biomass burning EC is preferentially incorporated into snow because of scavenging processes within the Arctic atmosphere or long-range transport in storm systems. This work provides a comprehensive view of EC particles captured in the High Arctic through wet and dry deposition and demonstrates that surface stations monitoring EC in PM might underestimate biomass burning and transport.
引用
收藏
页数:15
相关论文
共 100 条
  • [1] Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean
    Agnihotri, Rajesh
    Mandal, T. K.
    Karapurkar, S. G.
    Naja, Manish
    Gadi, Ranu
    Ahammmed, Y. Nazeer
    Kumar, Animesh
    Saud, T.
    Saxena, M.
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (17) : 2828 - 2835
  • [2] AMAP AMAP Assessment, 2015, BLACK CARB OZ ARCT C
  • [3] Transport of aerosol to the Arctic: analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign
    Ancellet, G.
    Pelon, J.
    Blanchard, Y.
    Quennehen, B.
    Bazureau, A.
    Law, K. S.
    Schwarzenboeck, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8235 - 8254
  • [4] Regionally-Varying Combustion Sources of the January 2013 Severe Haze Events over Eastern China
    Andersson, August
    Deng, Junjun
    Du, Ke
    Zheng, Mei
    Yan, Caiqing
    Skold, Martin
    Gustafsson, Orjan
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (04) : 2038 - 2043
  • [5] Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols
    Andreae, M. O.
    Gelencser, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 3131 - 3148
  • [6] Source Contributions to Wintertime Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer Apportionment
    Barrett, T. E.
    Robinson, E. M.
    Usenko, S.
    Sheesley, R. J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (19) : 11631 - 11639
  • [7] Bounding the role of black carbon in the climate system: A scientific assessment
    Bond, T. C.
    Doherty, S. J.
    Fahey, D. W.
    Forster, P. M.
    Berntsen, T.
    DeAngelo, B. J.
    Flanner, M. G.
    Ghan, S.
    Kaercher, B.
    Koch, D.
    Kinne, S.
    Kondo, Y.
    Quinn, P. K.
    Sarofim, M. C.
    Schultz, M. G.
    Schulz, M.
    Venkataraman, C.
    Zhang, H.
    Zhang, S.
    Bellouin, N.
    Guttikunda, S. K.
    Hopke, P. K.
    Jacobson, M. Z.
    Kaiser, J. W.
    Klimont, Z.
    Lohmann, U.
    Schwarz, J. P.
    Shindell, D.
    Storelvmo, T.
    Warren, S. G.
    Zender, C. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) : 5380 - 5552
  • [8] Key indicators of Arctic climate change: 1971-2017
    Box, Jason E.
    Colgan, William T.
    Christensen, Torben Rojle
    Schmidt, Niels Martin
    Lund, Magnus
    Parmentier, Frans-Jan W.
    Brown, Ross
    Bhatt, Uma S.
    Euskirchen, Eugenie S.
    Romanovsky, Vladimir E.
    Walsh, John E.
    Overland, James E.
    Wang, Muyin
    Corell, Robert W.
    Meier, Walter N.
    Wouters, Bert
    Mernild, Sebastian
    Mard, Johanna
    Pawlak, Janet
    Olsen, Morten Skovgard
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (04)
  • [9] Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
    Bozem, Heiko
    Hoor, Peter
    Kunkel, Daniel
    Koellner, Franziska
    Schneider, Johannes
    Herber, Andreas
    Schulz, Hannes
    Leaitch, W. Richard
    Aliabadi, Amir A.
    Willis, Megan
    Burkart, Julia
    Abbatt, Jonathan
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (23) : 15049 - 15071
  • [10] The complex response of Arctic aerosol to sea-ice retreat
    Browse, J.
    Carslaw, K. S.
    Mann, G. W.
    Birch, C. E.
    Arnold, S. R.
    Leck, C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (14) : 7543 - 7557