Geometric quantum discord and entanglement between two atoms in Tavis-Cummings model with dipole-dipole interaction under intrinsic decoherence

被引:28
作者
Fan, Kai-Ming [1 ]
Zhang, Guo-Feng [1 ,2 ]
机构
[1] Beihang Univ, Sch Phys & Nucl Energy Engn, Dept Phys, Beijing 100191, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
关键词
Dipole moment - Electric dipole moments - Quantum entanglement;
D O I
10.1140/epjd/e2014-50145-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum correlation and entanglement, measured by geometric quantum discord (GQD) and concurrence respectively, between two identical two-level atoms are investigated in detail in Tavis-Cummings model with dipole-dipole interaction (DDI) under intrinsic decoherence. The results show that the phase decoherence rate makes the original harmonic vibration with respective to time decay to a stable value. DDI coupling enhances GQD and corcurrence and even avoids entanglement sudden death (ESD). By the introduction of phase decoherence rate, the atom-light field coupling coefficient makes the decay of periodical curves quicker. Evolution periods are shortened as photon number increases, as well DDI and atomic-light field coupling become stronger. Moreover, both GQD and concurrence have nothing to do with frequency of cavity field and atoms for the resonant case.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Berry phase in a two-atom Jaynes-Cummings model with Kerr medium [J].
Bu, Shen-Ping ;
Zhang, Guo-Feng ;
Liu, Jia ;
Chen, Zi-Yu .
PHYSICA SCRIPTA, 2008, 78 (06)
[2]   Quantum Discord Bounds the Amount of Distributed Entanglement [J].
Chuan, T. K. ;
Maillard, J. ;
Modi, K. ;
Paterek, T. ;
Paternostro, M. ;
Piani, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[3]   Necessary and Sufficient Condition for Nonzero Quantum Discord [J].
Dakic, Borivoje ;
Vedral, Vlatko ;
Brukner, Caslav .
PHYSICAL REVIEW LETTERS, 2010, 105 (19)
[4]   Quantum discord and the power of one qubit [J].
Datta, Animesh ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[5]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[6]   The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model [J].
Fan Kai-Ming ;
Zhang Guo-Feng .
ACTA PHYSICA SINICA, 2013, 62 (13)
[7]   Quantum, classical, and total amount of correlations in a quantum state [J].
Groisman, B ;
Popescu, S ;
Winter, A .
PHYSICAL REVIEW A, 2005, 72 (03)
[8]   Classical, quantum and total correlations [J].
Henderson, L ;
Vedral, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6899-6905
[9]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[10]   Experimental Quantum Computing without Entanglement [J].
Lanyon, B. P. ;
Barbieri, M. ;
Almeida, M. P. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)