Simulation-based computation of information rates for channels with memory

被引:429
作者
Arnold, Dieter M.
Loeliger, Hans-Andrea
Vontobel, Pascal I.
Kavcic, Aleksandar
Zeng, Wei
机构
[1] ETH, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
[2] IBM Res Labs, Zurich, Switzerland
[3] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[4] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
bounds; channel capacity; finite-state models; hidden-Markov models; information rate; sum-product algorithm; trellises;
D O I
10.1109/TIT.2006.878110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The information rate of finite-state source/channel models can be accurately estimated by sampling both a long channel input sequence and the corresponding channel output sequence, followed by a forward sum-product recursion on the joint source/channel trellis. This method is extended to compute upper and lower bounds on the information rate of very general channels with memory by means of finite-state approximations. Further upper and lower bounds can be computed by reduced-state methods.
引用
收藏
页码:3498 / 3508
页数:11
相关论文
共 49 条
[2]   On finite-state information rates from channel simulations [J].
Arnold, D ;
Loeliger, HA .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :164-164
[3]  
Arnold D, 2001, 2001 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-10, CONFERENCE RECORD, P2692, DOI 10.1109/ICC.2001.936639
[4]   The binary jitter channel:: A new model for magnetic recording [J].
Arnold, D ;
Kavcic, A ;
Kötter, R ;
Loeliger, HA ;
Vontobel, PO .
2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, :433-433
[5]  
ARNOLD D, 2003, P 2003 IEEE INT S IN, P231
[6]  
ARNOLD D, 2002, P 40 ANN ALL C COMM, P457
[7]  
ARNOLD DM, 2003, THESIS ETH ZURICH ZU
[8]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[9]   THE STRONG ERGODIC THEOREM FOR DENSITIES - GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1985, 13 (04) :1292-1303
[10]   COMPUTATION OF CHANNEL CAPACITY AND RATE-DISTORTION FUNCTIONS [J].
BLAHUT, RE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (04) :460-+