Twisted bimodules and Hochschild cohomology for self-injective algebras of class An, II

被引:16
作者
Erdmann, K
Holm, T
Snashall, N
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Magdeburg, Inst Algebra & Geometrie, D-39016 Magdeburg, Germany
[3] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
关键词
Hochschild cohomology; self-injective algebras of class A(n); finite representation type; twisted bimodules;
D O I
10.1023/A:1020551906728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Up to derived equivalence, the representation-finite self-injective algebras of class An are divided into the wreath-like algebras (containing all Brauer tree algebras) and the Mobius algebras. In Part I (Forum Math. 11 (1999), 177-201), the ring structure of Hochschild cohomology of wreathlike algebras was determined, the key observation being that kernels in a minimal bimodule resolution of the algebras are twisted bimodules. In this paper we prove that also for Mobius algebras certain kernels in a minimal bimodule resolution carry the structure of a twisted bimodule. As an application we obtain detailed information on subrings of the Hochschild cohomology rings of Mobius algebras.
引用
收藏
页码:457 / 482
页数:26
相关论文
共 11 条
[1]  
[Anonymous], 1998, ALGEBRAS MODULES, V24, P183
[2]   The derived equivalence classification of representation-finite selfinjective algebras [J].
Asashiba, H .
JOURNAL OF ALGEBRA, 1999, 214 (01) :182-221
[3]   Minimal resolutions of algebras [J].
Butler, MCR ;
King, AD .
JOURNAL OF ALGEBRA, 1999, 212 (01) :323-362
[4]  
Erdmann K, 1999, FORUM MATH, V11, P177
[5]   On Hochschild cohomology of preprojective algebras, II [J].
Erdmann, K ;
Snashall, N .
JOURNAL OF ALGEBRA, 1998, 205 (02) :413-434
[6]  
Erdmann K, 1998, J ALGEBRA, V205, P391, DOI 10.1006/jabr.1998.7547
[7]  
Happel Dieter, 1989, Lecture Notes in Math., V1404, P108
[8]  
MEMBRILLOHERNAN.FH, 1993, THESIS U OXFORD
[9]  
Riedtmann C., 1979, LECT NOTES MATH, V832, P449
[10]  
SCHERZLER E, 1979, LECT NOTES MATH, V832, P545