Distributed Newest Vertex Bisection

被引:4
作者
Alkaemper, Martin [1 ]
Klofkorn, Robert [2 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Inst Angew Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Int Res Inst Stavanger, Thormohlensgt 55, N-5008 Bergen, Norway
关键词
Adaptive method; Mesh refinement; Parallel; DUNE; ADAPTIVE MESH REFINEMENT; GENERIC GRID INTERFACE; PARALLEL; ALGORITHMS;
D O I
10.1016/j.jpdc.2016.12.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Distributed adaptive conforming refinement requires multiple iterations of the serial refinement algorithm and global communication as the refinement can be propagated over several processor boundaries. We show bounds on the maximum number of iterations. The algorithm is implemented within the open-source software package DUNE-ALUGRID. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 29 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2016, Archive of Numerical Software, DOI DOI 10.11588/ANS.2016.1.23252
[3]  
[Anonymous], 1972, THESIS
[4]   Locally adapted tetrahedral meshes using bisection [J].
Arnold, DN ;
Mukherjee, A ;
Pouly, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :431-448
[5]  
Bader M., 2013, Texts in Computational Science and Engineering, V9
[6]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[7]   A generic grid interface for parallel and adaptive scientific computing.: Part I:: abstract framework [J].
Bastian, P. ;
Blatt, M. ;
Dedner, A. ;
Engwer, C. ;
Kloefkorn, R. ;
Ohlberger, M. ;
Sander, O. .
COMPUTING, 2008, 82 (2-3) :103-119
[8]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[9]  
Boman E.G., 2012, SCI PROGRAM, V20
[10]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771