Corrosion resistance of a two-stage stress-aged Al-Cu-Mg alloy: Effects of stress-aging temperature

被引:42
作者
Lin, Y. C. [1 ,2 ,3 ]
Liu, Guan [1 ,3 ]
Chen, Ming-Song [1 ,2 ]
Huang, Yuan-Chun [1 ,2 ,3 ]
Chen, Zhi-Guo [4 ]
Ma, Xiang [5 ]
Jiang, Yu-Qiang [1 ,3 ]
Li, Jia [1 ,3 ]
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Peoples R China
[2] Cent S Univ, Light Alloy Res Inst, Changsha 410083, Peoples R China
[3] State Key Lab High Performance Complex Mfg, Changsha 410083, Peoples R China
[4] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[5] SINTEF Mat & Chem, Oslo, Norway
关键词
Alloy; Precipitation; Corrosion test; Electron microscopy; Polarization; TENSILE DEFORMATION BEHAVIORS; ALUMINUM-ALLOY; MECHANICAL-PROPERTIES; LOCALIZED CORROSION; PITTING CORROSION; CONSTITUTIVE MODEL; MICROSTRUCTURE; PRECIPITATION; 2024-T3; PROTECTION;
D O I
10.1016/j.jallcom.2015.10.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-stage stress-aging experiments of an Al-Cu-Mg alloy were performed. The effects of stress-aging temperature on corrosion resistance of the two-stage stress-aged Al-Cu-Mg alloy are discussed. It is found that the stress-aging temperature significantly affects corrosion resistance, which is ascribed to the evolution of aging precipitates. The aging precipitates uniformly nucleate in the first stage of two-stage stress-aging. Increasing stress-aging temperature can enhance the uniform distribution of precipitates, but precipitates easily become coarse in the second stage of two-stage stress-aging. The coarsen precipitates enlarge the potential difference between aging precipitate and aluminum matrix, and decrease the corrosion resistance. So, the corrosion resistance of the stress-aged alloy decreases with the increase of the second stage stress-aging temperature. Furthermore, the optimized stress-aging temperature is about 433 K within the tested conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:855 / 865
页数:11
相关论文
共 54 条
[1]  
[Anonymous], 2006, E13911 ASTM INT
[2]  
ASTM, 2004, G10289 ASTM INT
[3]   Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings [J].
Bergant, Zoran ;
Trdan, Uros ;
Grum, Janez .
CORROSION SCIENCE, 2014, 88 :372-386
[4]   Electrochemical characteristics of intermetallic phases in aluminum alloys - An experimental survey and discussion [J].
Birbilis, N ;
Buchheit, RG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :B140-B151
[5]   Corrosion of AA2024-T3 Part I. Localised corrosion of isolated IM particles [J].
Boag, A. ;
Hughes, A. E. ;
Glenn, A. M. ;
Muster, T. H. ;
McCulloch, D. .
CORROSION SCIENCE, 2011, 53 (01) :17-26
[6]   Chitosan-based self-healing protective coatings doped with cerium nitrate for corrosion protection of aluminum alloy 2024 [J].
Carneiro, J. ;
Tedim, J. ;
Fernandes, S. C. M. ;
Freire, C. S. R. ;
Silvestre, A. J. D. ;
Gandini, A. ;
Ferreira, M. G. S. ;
Zheludkevich, M. L. .
PROGRESS IN ORGANIC COATINGS, 2012, 75 (1-2) :8-13
[7]   Microstructures and mechanical properties of age-formed 7050 aluminum alloy [J].
Chen, J. F. ;
Zhen, L. ;
Jiang, J. T. ;
Yang, L. ;
Shao, W. Z. ;
Zhang, B. Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 539 :115-123
[8]  
Chen J.F., 2013, MATER CORROS, V64, P1
[9]   In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy [J].
Deschamps, A. ;
Fribourg, G. ;
Brechet, Y. ;
Chemin, J. L. ;
Hutchinson, C. R. .
ACTA MATERIALIA, 2012, 60 (05) :1905-1916
[10]   Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation [J].
Fadaee, Hossein ;
Javidi, Mehdi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 604 :36-42