共 50 条
Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation
被引:161
|作者:
Wang, Yawen
[1
]
Huang, Yu
[1
]
Ho, Wingkei
[2
]
Zhang, Lizhi
[1
]
Zou, Zhigang
[3
]
Lee, Shuncheng
[2
]
机构:
[1] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China
[2] Hong Kong Polytech Univ, Res Ctr Environm Technol & Management, Dept Civil & Struct Engn, Hong Kong, Hong Kong, Peoples R China
[3] Nanjing Univ, Dept Phys, ERERC, Nanjing 210093, Peoples R China
基金:
美国国家科学基金会;
关键词:
L-Cysteine;
Doped TiO2 nanocrystals;
Photocatalysis;
NO;
Removal;
ELECTROCHEMICAL HYDROGEN STORAGE;
DOPED TIO2;
CODOPED TIO2;
ASSISTED SYNTHESIS;
CDS NANOPARTICLES;
METHYLENE-BLUE;
GEL METHOD;
NITROGEN;
TITANIUM;
CARBON;
D O I:
10.1016/j.jhazmat.2009.03.071
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
In this study, C-N-S-tridoped titanium dioxide (TiO2) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule L-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO2 through substituting oxygen atoms, IN might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO2 and most C could form a mixed layer of carbonate species deposited on the surface of TiO2 nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO2 samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO2 nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO2 nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO2 photocatalyst. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 87
页数:11
相关论文