COMPRESSIVE SENSING WITH WEIGHTED LOCAL CLASSIFIERS FOR ROBOT VISUAL TRACKING

被引:7
作者
Huang, Wenhui [1 ]
Gu, Jason [2 ]
Ma, Xin [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[2] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3H 3J5, Canada
关键词
Compressive tracking; weighted local classifiers; particle filter; robot visual tracking; RANDOM PROJECTIONS;
D O I
10.2316/Journal.206.2016.5.206-4729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an improved compressive tracking (CT) algorithm with weighted local classifiers (WLCs) under the particle filter framework for robot visual tracking. WLCs address some drift problems caused by partial interference, such as partial occlusion or partial appearance variation occurring under certain circumstances, by dividing each interest candidate into several rectangular subregions (or local regions), each of which is independently trained with a local naive Bayesian classifier. Therefore, the object location is considered the candidate with the maximal response of a global classifier, which is a combination of the WLCs. Furthermore, we incorporate the particle filter into CT to account for the motion of the object and to better estimate the object location. The experimental results demonstrate the effectiveness and robustness of our proposed tracking algorithm.
引用
收藏
页码:416 / 427
页数:12
相关论文
共 23 条
  • [1] Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    Achlioptas, D
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) : 671 - 687
  • [2] [Anonymous], 2006, BMVC06
  • [3] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632
  • [4] Bae SH, 2014, IEEE IMAGE PROC, P358, DOI 10.1109/ICIP.2014.7025071
  • [5] Buessler JL, 2005, INT J ROBOT AUTOM, V20, P86, DOI 10.2316/Journal.206.2005.2.206-2781
  • [6] Decoding by linear programming
    Candes, EJ
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4203 - 4215
  • [7] Near-optimal signal recovery from random projections: Universal encoding strategies?
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5406 - 5425
  • [8] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [9] NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION
    GORDON, NJ
    SALMOND, DJ
    SMITH, AFM
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) : 107 - 113
  • [10] Haoxiang Lang, 2010, 2010 8th IEEE International Conference on Control and Automation (ICCA 2010), P92, DOI 10.1109/ICCA.2010.5524180