Image registration and data fusion in radiation therapy

被引:116
作者
Kessler, M. L. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48103 USA
关键词
D O I
10.1259/bjr/70617164
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper provides an overview of image registration and data fusion techniques used in radiation therapy, and examples of their use. They are used at all stages of the patient management process; for initial diagnosis and staging, during treatment planning and delivery, and after therapy to help monitor the patients' response to treatment. Most treatment planning systems now support some form of interactive or automated image registration and provide tools for mapping information, such as tissue outlines and computed dose from one imaging study to another. To complement this, modern treatment delivery systems offer means for acquiring and registering 2D and 3D image data at the treatment unit to aid patient setup. Techniques for adapting and customizing treatments during the course of therapy using 3D and 4D anatomic and functional imaging data are currently being introduced into the clinic. These techniques require sophisticated image registration and data fusion technology to accumulate properly the delivered dose and to analyse possible physiological and anatomical changes during treatment. Finally, the correlation of radiological changes after therapy with delivered dose also requires the use of image registration and fusion techniques. (C) 2006 The British Institute of Radiology.
引用
收藏
页码:S99 / S108
页数:10
相关论文
共 42 条
[1]   CORRELATION OF PROJECTION RADIOGRAPHS IN RADIATION-THERAPY USING OPEN CURVE SEGMENTS AND POINTS [J].
BALTER, JM ;
PELIZZARI, CA ;
CHEN, GTY .
MEDICAL PHYSICS, 1992, 19 (02) :329-334
[3]   Accuracy of finite element model-based multi-organ deformable image registration [J].
Brock, KK ;
Sharpe, MB ;
Dawson, LA ;
Kim, SM ;
Jaffray, DA .
MEDICAL PHYSICS, 2005, 32 (06) :1647-1659
[4]   Image-based dose planning of intracavitary brachytherapy: Registration of serial-imaging studies using deformable anatomic templates [J].
Christensen, GE ;
Carlson, B ;
Chao, KSC ;
Yin, P ;
Grigsby, PW ;
Nguyen, K ;
Dempsey, JF ;
Lerma, FA ;
Bae, KT ;
Vannier, MW ;
Williamson, JF .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :227-243
[5]   Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines [J].
Coselmon, MM ;
Balter, JM ;
McShan, DL ;
Kessler, ML .
MEDICAL PHYSICS, 2004, 31 (11) :2942-2948
[6]  
*DICOM, 2004, PS33 DICOM NAT EL 3
[7]   Intensity-modulated radiation therapy: A clinical perspective - Introduction [J].
Eisbruch, A .
SEMINARS IN RADIATION ONCOLOGY, 2002, 12 (03) :197-198
[8]   Registration of magnetic resonance spectroscopic imaging to computed tomography for radiotherapy treatment planning [J].
Graves, EE ;
Pirzkall, A ;
Nelson, SJ ;
Larson, D ;
Verhey, L .
MEDICAL PHYSICS, 2001, 28 (12) :2489-2496
[9]   Medical image registration [J].
Hill, DLG ;
Batchelor, PG ;
Holden, M ;
Hawkes, DJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (03) :R1-R45
[10]   Flat-panel cone-beam computed tomography for image-guided radiation therapy [J].
Jaffray, DA ;
Siewerdsen, JH ;
Wong, JW ;
Martinez, AA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 53 (05) :1337-1349