Multi-objective evolutionary feature selection for online sales forecasting

被引:78
作者
Jimenez, F. [1 ]
Sanchez, G. [1 ]
Garcia, J. M. [1 ]
Sciavicco, G. [2 ]
Miralles, L. [3 ]
机构
[1] Univ Murcia, Fac Comp Sci, Madrid, Spain
[2] Univ Ferrara, Dept Math & Comp Sci, Ferrara, Italy
[3] Univ Panamericana, Fac Ingn, Campus Mexico, Augusto Rodin 498, Mexico City 03920, Mexico
关键词
Multi-objective evolutionary algorithms; Feature selection; Random forest; Regression model; Online sales forecasting; FEATURE SUBSET-SELECTION; GENETIC ALGORITHM; CLASSIFICATION; INFORMATION; POWER;
D O I
10.1016/j.neucom.2016.12.045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sales forecasting uses historical sales figures, in association with products characteristics and peculiarities, to predict short-term or long-term future performance in a business, and it can be used to derive sound financial and business plans. By using publicly available data, we build an accurate regression model for online sales forecasting obtained via a novel feature selection methodology composed by the application of the multi objective evolutionary algorithm ENORA (Evolutionary NOn-dominated Radial slots based Algorithm) as search strategy in a wrapper method driven by the well-known regression model learner Random Forest. Our proposal integrates feature selection for regression, model evaluation, and decision making, in order to choose the most satisfactory model according to an a posteriori process in a multi-objective context. We test and compare the performances of ENORA as multi-objective evolutionary search strategy against a standard multi objective evolutionary search strategy such as NSGA-11 (Non-dominated Sorted Genetic Algorithm), against a classical backward search strategy such as RFE (Recursive Feature Elimination), and against the original data set.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 50 条
  • [21] An evolutionary multi-objective optimization framework of discretization-based feature selection for classification
    Zhou, Yu
    Kang, Junhao
    Kwong, Sam
    Wang, Xu
    Zhang, Qingfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [22] Multi-objective squirrel search algorithm for EEG feature selection
    Wang, Chao
    Li, Songjie
    Shi, Miao
    Zhao, Jie
    Wen, Tao
    Acharya, U. Rajendra
    Xie, Neng-gang
    Cheong, Kang Hao
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 73
  • [23] EEG Multi-Objective Feature Selection Using Temporal Extension
    Ferariu, Lavinia
    Cimpanu, Corina
    Dumitriu, Tiberius
    Ungureanu, Florina
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 105 - 110
  • [24] The Comparative Analysis of Single-Objective and Multi-objective Evolutionary Feature Selection Methods
    Ali, Syed Imran
    Lee, Sungyoung
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM) 2019, 2019, 935 : 975 - 985
  • [25] Multi-Objective Lagged Feature Selection Based on Dependence Coefficient for Time-Series Forecasting
    Lourdes Linares-Barrera, Maria
    Jimenez Navarro, Manuel J.
    Riquelme, Jose C.
    Martinez-Ballesteros, Maria
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 81 - 90
  • [26] EMOPG plus FS: Evolutionary multi-objective prototype generation and feature selection
    Rosales-Perez, Alejandro
    Gonzalez, Jesus A.
    Coello, Carlos A. Coello
    Reyes-Garcia, Carlos A.
    Jair Escalante, Hugo
    INTELLIGENT DATA ANALYSIS, 2016, 20 : S37 - S51
  • [27] A multi-objective optimization algorithm for feature selection problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 1845 - 1863
  • [28] A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
    Marwa Hammami
    Slim Bechikh
    Chih-Cheng Hung
    Lamjed Ben Said
    Memetic Computing, 2019, 11 : 193 - 208
  • [29] HFMOEA: a hybrid framework for multi-objective feature selection
    Kundu, Rohit
    Mallipeddi, Rammohan
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (03) : 949 - 965
  • [30] Multi-objective feature selection algorithm using Beluga Whale Optimization
    Esfahani, Kiana Kouhpah
    Zade, Behnam Mohammad Hasani
    Mansouri, Najme
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2025, 257