The strategies of filament control for improving the resistive switching performance

被引:89
作者
Li, Teng [1 ,2 ]
Yu, Hongliang [3 ]
Chen, Stephenie Hiu Yuet [4 ]
Zhou, Ye [3 ]
Han, Su-Ting [1 ,2 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[4] Harrow Int Sch Hong Kong, 38 Tsing Ying Rd, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-TRANSPORT MECHANISM; RANDOM-ACCESS MEMORY; THIN-FILMS; CONDUCTIVE FILAMENTS; MEMRISTIVE DEVICES; GRAPHENE; UNIFORMITY; BILAYER; NANOFILAMENT; IMPROVEMENT;
D O I
10.1039/d0tc03639k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the rapid application of artificial intelligence in daily life and work, the traditional von Neumann architecture device faces the limitation of scalability and high energy consumption. These limitations can be overcome by in-memory computing based on analog resistance switch devices, but the resistive switching behavior depends on the formation and rupture of filaments with spatial and temporal variation. According to the filamentary switching mechanisms, conductive filaments play an irreplaceable role in the resistive switching process, and the stochastic filaments are the main cause of nonuniform performances and variation. Therefore, an efficient way to solve these problems is by controlling the filaments. In recent years, researchers have made many efforts to control the filaments, resulting in numerous feasible methods being invented. Herein, departing from the filamentary mechanisms, the strategies of filament control are discussed from the aspects of electrode optimization, switching layer optimization and channel design. Meanwhile, the challenges of promotion in device performance and application in neuromorphic computing and outlook for future research directions are also discussed.
引用
收藏
页码:16295 / 16317
页数:23
相关论文
共 160 条
[1]   Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM) [J].
Aga, Fekadu Gochole ;
Woo, Jiyong ;
Lee, Sangheon ;
Song, Jeonghwan ;
Park, Jaesung ;
Park, Jaehyuk ;
Lim, Seokjae ;
Sung, Changhyuck ;
Hwang, Hyunsang .
AIP ADVANCES, 2016, 6 (02)
[2]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[5]   Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO3 thin films [J].
Au, K. ;
Gao, X. S. ;
Wang, Juan ;
Bao, Z. Y. ;
Liu, J. M. ;
Dai, J. Y. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (02)
[6]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[7]   Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories [J].
Celano, U. ;
Giammaria, G. ;
Goux, L. ;
Belmonte, A. ;
Jurczak, M. ;
Vandervorst, W. .
NANOSCALE, 2016, 8 (29) :13915-13923
[8]   Dual Ion Effect of the Lithium Silicate Resistance Random Access Memory [J].
Chang, Kuan-Chang ;
Tsai, Tsung-Ming ;
Chang, Ting-Chang ;
Chen, Kai-Huang ;
Zhang, Rui ;
Wang, Zhi-Yang ;
Chen, Jung-Hui ;
Young, Tai-Fa ;
Chen, Min-Chen ;
Chu, Tian-Jian ;
Huang, Syuan-Yong ;
Syu, Yong-En ;
Bao, Ding-Hua ;
Sze, Simon M. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) :530-532
[9]   Resistance random access memory [J].
Chang, Ting-Chang ;
Chang, Kuan-Chang ;
Tsai, Tsung-Ming ;
Chu, Tian-Jian ;
Sze, Simon M. .
MATERIALS TODAY, 2016, 19 (05) :254-264
[10]   High Uniformity of Resistive Switching Characteristics in a Cr/ZnO/Pt Device [J].
Chang, Wen-Yuan ;
Huang, Hsin-Wei ;
Wang, Wei-Ting ;
Hou, Cheng-Hao ;
Chueh, Yu-Lun ;
He, Jr-Hau .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (03) :G29-G32