A Flexible and High-Voltage Internal Tandem Supercapacitor Based on Graphene-Based Porous Materials with Ultrahigh Energy Density

被引:58
|
作者
Zhang, Fan [1 ,2 ]
Lu, Yanhong [1 ,2 ]
Yang, Xi [1 ,2 ]
Zhang, Long [1 ,2 ]
Zhang, Tengfei [1 ,2 ]
Leng, Kai [1 ,2 ]
Wu, Yingpeng [1 ,2 ]
Huang, Yi [1 ,2 ]
Ma, Yanfeng [1 ,2 ]
Chen, Yongsheng [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[2] Nankai Univ, Ctr Nanoscale Sci & Technol, Inst Polymer Chem, Coll Chem, Tianjin 300071, Peoples R China
关键词
FUEL-CELL STACKS; ELECTRODE MATERIALS; AQUEOUS SUPERCAPACITORS; CARBON MATERIALS; SURFACE-AREA; IONIC LIQUID; OXIDE SHEETS; PORE-SIZE; PERFORMANCE; FABRICATION;
D O I
10.1002/smll.201303240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pursuing higher working voltage and packaged energy density, an internal tandem supercapacitor has been successfully designed and fabricated based on graphene-based porous carbon hybrid material. Compared with the packaged energy density of 27.2 Wh kg(cell)(-1) and working voltage of 3.5 V using EMIMBF4 electrolyte for the conventional single-cell supercapacitor, the internal tandem device with the same material achieves a much higher working voltage of 7 V as well as a significantly improved energy density of 36.3 Wh kg(cell)(-1) (increased by 33%), which is also about 7 times of that of the state-of-art commercial supercapacitors. A flexible internal tandem device is also designed and fabricated and demonstrated similar excellent performance.
引用
收藏
页码:2285 / 2292
页数:8
相关论文
共 50 条
  • [1] Graphene-Based Supercapacitor with an Ultrahigh Energy Density
    Liu, Chenguang
    Yu, Zhenning
    Neff, David
    Zhamu, Aruna
    Jang, Bor Z.
    NANO LETTERS, 2010, 10 (12) : 4863 - 4868
  • [2] Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors
    Zheng, Shuanghao
    Wu, Zhong-Shuai
    Wang, Sen
    Xiao, Han
    Zhou, Feng
    Sun, Chenglin
    Bao, Xinhe
    Cheng, Hui-Ming
    ENERGY STORAGE MATERIALS, 2017, 6 : 70 - 97
  • [3] Recent advances in utilizing graphene-based materials for flexible supercapacitor electrodes
    Bigdeloo, Mohammad
    Ehsani, Ali
    Sarabadani, Sara
    Shiri, Hamid Mohammad
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [4] A review on graphene-based electrode materials for supercapacitor
    Ran, Jing
    Liu, Yafei
    Feng, Huixia
    Shi, Haixiong
    Ma, Qing
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 137 : 106 - 121
  • [5] Microwave exfoliated graphene-based materials for flexible solid-state supercapacitor
    Hamra, A. A. B.
    Lim, H. N.
    Huang, N. M.
    Gowthaman, N. S. K.
    Nakajima, H.
    Rahman, M. Mahbubur
    JOURNAL OF MOLECULAR STRUCTURE, 2020, 1220 (1220)
  • [6] Graphene-based materials as supercapacitor electrodes
    Zhang, Li Li
    Zhou, Rui
    Zhao, X. S.
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (29) : 5983 - 5992
  • [7] Interfacial engineering of electrode/electrolyte for high-voltage and mechanically durable internal tandem flexible supercapacitor
    Zhang, Ping
    Jiang, Zeyu
    Du, Xin
    Li, Wenxi
    Zhong, Hongchun
    Zheng, Xiaowei
    Wu, Yancheng
    Zhang, Yangfan
    Tian, Liyong
    Yi, Ningbo
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [8] Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output
    Shi, Xiaoyu
    Wu, Zhong-Shuai
    Qin, Jieqiong
    Zheng, Shuanghao
    Wang, Sen
    Zhou, Feng
    Sun, Chenglin
    Bao, Xinhe
    ADVANCED MATERIALS, 2017, 29 (44)
  • [9] Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films
    Li, Meng
    Tang, Zhe
    Leng, Mei
    Xue, Junmin
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (47) : 7495 - 7502
  • [10] Superbending (0-180°) and High-Voltage Operating Metal-Oxide-Based Flexible Supercapacitor
    Kumar, Lakshya
    Boruah, Purna K.
    Das, Manash R.
    Deka, Sasanka
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) : 37665 - 37674