One-dimensional dynamics for traveling fronts in coupled map lattices

被引:19
|
作者
Carretero-González, R [1 ]
Arrowsmith, DK [1 ]
Vivaldi, F [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1329
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases. We show how the existence of an invariant function describing the front profile allows a reduction of the infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the propagation velocity. The mode locking of the velocity with respect to the system parameters then typically follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.
引用
收藏
页码:1329 / 1336
页数:8
相关论文
共 50 条
  • [41] Dynamics of a traveling hole in one-dimensional systems near subcritical bifurcation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 126
  • [42] Symbolic dynamics of the one-dimensional biquadratic map with two parameters
    Xie, Fageng
    Wuli Xuebao/Acta Physica Sinica, 1994, 43 (02): : 191 - 197
  • [43] Local symmetry dynamics in one-dimensional aperiodic lattices: a numerical study
    Morfonios, C.
    Schmelcher, P.
    Kalozoumis, P. A.
    Diakonos, F. K.
    NONLINEAR DYNAMICS, 2014, 78 (01) : 71 - 91
  • [44] Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices
    Zhang, F
    Isbister, DJ
    Evans, DJ
    PHYSICAL REVIEW E, 2000, 61 (04): : 3541 - 3546
  • [45] Quantum dynamics of impenetrable SU(N) fermions in one-dimensional lattices
    Zhang, Yicheng
    Vidmar, Lev
    Rigol, Marcos
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [46] Local symmetry dynamics in one-dimensional aperiodic lattices: a numerical study
    C. Morfonios
    P. Schmelcher
    P. A. Kalozoumis
    F. K. Diakonos
    Nonlinear Dynamics, 2014, 78 : 71 - 91
  • [47] Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices
    Zhang, Fei
    Isbister, Dennis J.
    Evans, Denis J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 3541 - 3546
  • [48] A ONE-DIMENSIONAL SEARCH WITH TRAVELING COST
    KIKUTA, K
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1990, 33 (03) : 262 - 276
  • [49] Controlling localized spatiotemporal chaos in a one-dimensional coupled map lattice
    Facultad de Ciencias, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (159-163):
  • [50] Controlling localized spatiotemporal chaos in a one-dimensional coupled map lattice
    Parmananda, P
    Jiang, Y
    PHYSICS LETTERS A, 1997, 231 (3-4) : 159 - 163