One-dimensional dynamics for traveling fronts in coupled map lattices

被引:19
作者
Carretero-González, R [1 ]
Arrowsmith, DK [1 ]
Vivaldi, F [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1329
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases. We show how the existence of an invariant function describing the front profile allows a reduction of the infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the propagation velocity. The mode locking of the velocity with respect to the system parameters then typically follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.
引用
收藏
页码:1329 / 1336
页数:8
相关论文
共 23 条
[1]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[2]   Theory of phase-locking in generalized hybrid Josephson-junction arrays [J].
Basler, M ;
Krech, W ;
Platov, KY .
PHYSICAL REVIEW B, 1997, 55 (02) :1114-1122
[3]   CHAOTIC CASCADE MODEL FOR TURBULENT VELOCITY DISTRIBUTIONS [J].
BECK, C .
PHYSICAL REVIEW E, 1994, 49 (05) :3641-3652
[4]   Dynamics of a ring of pulse-coupled oscillators: Group theoretic approach [J].
Bressloff, PC ;
Coombes, S ;
deSouza, B .
PHYSICAL REVIEW LETTERS, 1997, 79 (15) :2791-2794
[5]   Low dimensional traveling interfaces in coupled map lattices [J].
Carretero-Gonzalez, R .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12) :2745-2754
[6]  
CARRETEROGONZAL.R, 1997, THESIS U LONDON
[7]   Mode-locking in coupled map lattices [J].
CarreteroGonzalez, R ;
Arrowsmith, DK ;
Vivaldi, F .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :381-403
[8]   PATTERN-FORMATION AND SPATIAL CHAOS IN LATTICE DYNAMICAL-SYSTEMS .1. [J].
CHOW, SN ;
MALLETPARET, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (10) :746-751
[9]   Dynamics of lattice differential equations [J].
Chow, SN ;
MalletParet, J ;
VanVleck, ES .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (09) :1605-1621
[10]  
COUTINHO R, 1988, NONLINEARITY, V11, P1407