Asymptotic behavior of a relativistic diffusion in Robertson-Walker space-times

被引:2
作者
Angst, Juergen [1 ]
机构
[1] Univ Rennes 1, IRMAR, Bur 320,Bat 22,Campus Beaulieu, F-35042 Rennes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2016年 / 52卷 / 01期
关键词
Brownian Motion; Relativistic diffusion; Robertson-Walker space-times; Causal boundary; POISSON BOUNDARY; MARKOV-PROCESSES; WORLD-STRUCTURE; CURVATURE; GEOMETRY; POINTS;
D O I
10.1214/14-AIHP626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We determine the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a Robertson Walker space time. We prove in particular that when approaching the explosion time of the diffusion, its projection on the base manifold almost surely converges to a random point of the causal boundary and we also describe the behavior of the tangent vector in the neighborhood of this limiting point.
引用
收藏
页码:376 / 411
页数:36
相关论文
共 22 条
[1]   The causal boundary of product spacetimes [J].
Alana, V. ;
Flores, J. L. .
GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (10) :1697-1718
[2]   Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Colares, A. Gervasio .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 :703-729
[3]   POISSON BOUNDARY OF A RELATIVISTIC DIFFUSION IN CURVED SPACE-TIMES: AN EXAMPLE [J].
Angst, Juergen .
ESAIM-PROBABILITY AND STATISTICS, 2015, 19 :502-514
[4]   Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Ulsamer, Stefanie .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (02) :369-409
[5]   Poisson boundary of a relativistic diffusion [J].
Bailleul, Ismael .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (1-2) :283-329
[6]   ASYMPTOTICS OF SOME RELATIVISTIC MARKOV-PROCESSES [J].
DUDLEY, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (12) :3551-3555
[7]   LORENTZ-INVARIANT MARKOV PROCESSES IN RELATIVISTIC PHASE SPACE [J].
DUDLEY, RM .
ARKIV FOR MATEMATIK, 1966, 6 (03) :241-&
[8]   Geodesic connectedness and conjugate points in GRW space-times [J].
Flores, JL ;
Sánchez, M .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 36 (3-4) :285-314
[9]   Relativistic diffusions and Schwarzschild geometry [J].
Franchi, Jacques ;
Le Jan, Yves .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (02) :187-251
[10]   Curvature Diffusions in General Relativity [J].
Franchi, Jacques ;
Le Jan, Yves .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) :351-382