Saliency detection integrating global and local information

被引:26
作者
Zhang, Ming
Wu, Yunhe
Du, Yue
Fang, Lei
Pang, Yu [1 ]
机构
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130117, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature similarity metric; Global and local information; Locality-based coding method; Integration mechanism; VISUAL SALIENCY; ATTENTION; RANKING; MODEL;
D O I
10.1016/j.jvcir.2018.03.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel visual saliency detection algorithm. The saliency of image region is defined as its global and local information. Firstly, we construct background-based map based on a novel multi-feature similarity metric by adjusting the weight of different features varied with image content, then integrated with center prior and Objectless measure into global saliency map. Secondly, a robust locality-based coding method is used to extract image local saliency cues by introducing effective codebooks selection rule and codebook element's reliability into reconstruction. Finally, we propose a novel integration mechanism to incorporate global and local saliency map for performance improvement. In terms of experimental results analysis on four benchmark datasets, the superiority of proposed algorithm is adequately demonstrated.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 38 条
[11]   Object-level saliency detection with color attributes [J].
Huo, Lina ;
Jiao, Licheng ;
Wang, Shuang ;
Yang, Shuyuan .
PATTERN RECOGNITION, 2016, 49 :162-173
[12]   Automatic foveation for video compression using a neurobiological model of visual attention [J].
Itti, L .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) :1304-1318
[13]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[14]   Saliency Detection via Absorbing Markov Chain [J].
Jiang, Bowen ;
Zhang, Lihe ;
Lu, Huchuan ;
Yang, Chuan ;
Yang, Ming-Hsuan .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1665-1672
[15]   Salient Object Detection: A Discriminative Regional Feature Integration Approach [J].
Jiang, Huaizu ;
Wang, Jingdong ;
Yuan, Zejian ;
Wu, Yang ;
Zheng, Nanning ;
Li, Shipeng .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2083-2090
[16]   Deep Saliency with Encoded Low level Distance Map and High Level Features [J].
Lee, Gayoung ;
Tai, Yu-Wing ;
Kim, Junmo .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :660-668
[17]   Visual Saliency Detection Based on Multiscale Deep CNN Features [J].
Li, Guanbin ;
Yu, Yizhou .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5012-5024
[18]   Inner and Inter Label Propagation: Salient Object Detection in the Wild [J].
Li, Hongyang ;
Lu, Huchuan ;
Lin, Zhe ;
Shen, Xiaohui ;
Price, Brian .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (10) :3176-3186
[19]   Saliency Detection via Dense and Sparse Reconstruction [J].
Li, Xiaohui ;
Lu, Huchuan ;
Zhang, Lihe ;
Ruan, Xiang ;
Yang, Ming-Hsuan .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :2976-2983
[20]   The Secrets of Salient Object Segmentation [J].
Li, Yin ;
Hou, Xiaodi ;
Koch, Christof ;
Rehg, James M. ;
Yuille, Alan L. .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :280-287