On multiplicative order of elements in finite fields based on cyclotomic polynomials

被引:0
作者
Popovych, Roman [1 ]
机构
[1] Lviv Polytech Natl Univ, Dept Specialized Comp Syst, Bandery Str 12, UA-79013 Lvov, Ukraine
关键词
Finite field; Multiplicative order; Lower bound; Partition;
D O I
10.7546/nntdm.2020.26.2.47-52
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain explicit lower bound on multiplicative orders of all elements in finite field extensions generated by a root of unity. The bound does not depend on any unknown constant. The result of Ahmadi, Shparlinski and Voloch [1] is a consequence of our main result.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
[41]   A characterization of primitive polynomials over finite fields [J].
Fitzgerald, RW .
FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (01) :117-121
[42]   Roots of certain polynomials over finite fields [J].
Ding, Zhiguo ;
Zieve, Michael E. .
JOURNAL OF NUMBER THEORY, 2023, 252 :157-176
[43]   SMOOTHNESS TESTING OF POLYNOMIALS OVER FINITE FIELDS [J].
Biasse, Jean-Francois ;
Jacobson, Michael J., Jr. .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) :459-477
[44]   Some primitive polynomials over finite fields [J].
Chang, SW ;
Lee, JB .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (03) :412-416
[45]   SOME PRIMITIVE POLYNOMIALS OVER FINITE FIELDS [J].
Seunghwan Chang ;
June Bok Lee Department of Mathematics Yonsei University Seoul Korea .
ActaMathematicaScientia, 2001, (03) :412-416
[46]   A construction of primitive polynomials over finite fields [J].
Cardell, Sara D. ;
Climent, Joan-Josep .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12) :2424-2431
[47]   On the evaluation of multivariate polynomials over finite fields [J].
Ballico, E. ;
Elia, M. ;
Sala, M. .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 :255-262
[48]   On the number of primitive polynomials over finite fields [J].
Chang, Y ;
Chou, WS ;
Shiue, PJS .
FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) :156-163
[49]   PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS [J].
HANSEN, T ;
MULLEN, GL .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :639-643
[50]   Elements of prescribed order, prescribed traces and systems of rational functions over finite fields [J].
Özbudak, F .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 34 (01) :35-54